
Modern C++
Programming
5. C++ Object Oriented

Programming

Federico Busato

University of Verona, Dept. of Computer Science
2018, v1.0

Agenda

• C++ Classes
- Class hierarchy
- Inheritance attributes
- Class constructor
- Default constructor
- Class initialization
- Copy constructor
- default keyword
- Class destructor

• Class keyword
- this
- static
- const
- mutable
- using
- friend
- delete

• Polymorphism
- Function binding
- virtual method
- override/final keywords
- virtual common errors
- Pure virtual methods
- Abstract class and interface

• Operator Overloading
- Operator �
- Operator operator()
- Operator operator=

• Special Objects
- Aggregate
- Trivial class
- Standard-layout class
- Plain old data type 1/73

C++ Classes

C++ Classes

Definition (C++ Class)
Classes are an expanded concept of data structures: like data struc-
tures, they can contain data members, but they can also contain
functions as members.

Definition (Class Member/Field)
The data within a class are called data members or class field.
Functions within a class are called function members or methods
of the class.

Definition (struct vs. class)
Structure and classes are semantically equivalent. In general,
struct represents passive objects, while class active objects.

2/73

C++ Classes

struct A; // class declaration (incomplete type)

class B {
void g() { cout << "g"; } // function member definition

};

struct A { // class definition
int a; // field/variable member
void f(); // function member (declaration)

B b; // b class is a field of A
using T = B; // alias of B inside A

};

void A::f() { cout << "f"; } // function member definition

int main() {
A::T obj; // equal to B obj;

}
3/73

Class Hierarchy 1/2

Definition (Child/Derived Class or Subclass)
New class that inherits properties of the base class is called a
derived class

Definition (Parent/Base Class)
A parent class is the closest class that we derived from to create
the one we are referencing as the child class

Definition (Extend a Class)
Extend a base class refers to creating a new class which retain
characteristics of the base class and on top it can add (and never
remove) its own members

4/73

Class Hierarchy 2/2
include <iostream>
using namespace std;

struct A { // base class
int value = 3;

};

struct B : A { // B extends A (B is child of A)
int data = 4;
int f() { return data; }

};
struct C : B { // C extends B (C is child of B)
};

int main() {
A base;
B derived;
C child;
cout << base.value; // print 3
cout << derived.data; // print 4
cout << child.f(); // print 4

}
5/73

Inheritance Attributes 1/3

private , public , and protected inheritance

• public: The public members of a base class can be accessed
by members of that base class, members of its derived class
as well as the members which are outside the base class and
derived class

• protected: The protected members of a base class can be
accessed by members of base class as well as members of its
derived class

• private: The private members of a base class can only be
accessed by members of that base class

6/73

Inheritance Attributes 2/3

member
declaration

inheritance derived classes

public
public

public
protected protected
private \

public
protected

protected
protected protected
private \

public
private

private
protected private
private \

• structs have default public members
• classes have default private members

7/73

Inheritance Attributes 3/3

include <iostream>
using namespace std;

class A {
public:

int a = 3;
int f() { return a; }

protected:
int b;

};

class B : public A { // without public, B inherits
}; // "a" and f() as private members

int main() {
B derived;
cout << derived.f(); // print 3
cout << derived.b; // compile error : private

}
8/73

Class Constructor 1/6

Definition (Constructor [ctor])
A class constructor is a special member function of a class that
is executed whenever we create new objects of that class

• A constructor has exact same name as the class
• A constructor does not have any return type
• A constructor is useful for setting initial values for any

member variables
• We can define multiple constructors (different signatures)

Class constructors are never inherited. Derived class must call
a Base constructor before the current class constructor
Class constructors are called in order of declaration
(C++ objects are constructed like onions)

9/73

Class Constructor (Examples) 4/6

include <iostream>
class A {

int x;
public:

A(int x1) : x(x1) { // constructor
std::cout << "A";

}
};

class B : A {
public:

B(int b1) : A(b1) { std::cout << "B"; }
};

int main() {
A a(1); // print "A"
B b(2); // print "A", then print "B"
A c = {1}; // direct initialization, print "A"
A d {1}; // uniform initialization (C++11), print "A"

}
10/73

Class Constructor (Default Constructor) 2/6

Definition (Default Constructor)
A default constructor is a constructor which can be called with
no arguments

Every class always define an implicit or explicit default constructor.
Note: in class the implicit default constructor is marked as private

The default constructor of a class is marked as deleted if
(simplified):

• It has a member of reference/const type
• It has a member/base class which has a deleted (or

inaccessible, or ambiguous) default constructor
• It has a base class which has a deleted (or inaccessible, or

ambiguous) destructor
11/73

Class Constructor (Examples) 4/6
struct A {}; // implicit-declared public default constructor

class B {}; // implicit-declared private default constructor

class C {
public:

C() { // user-defined default constructor
std::cout << "C";

}
};
struct D {

int& a; // implicit-deleted default constructor
};

int main() {
A a1; // call the default constructor

// A a2(); // interpreted as a function declaration!!
// B b; // compile error!! private

C c; // ok, print "C"
C array[3]; // print three time "B"

// D d; // compile error!! deleted
}

12/73

Initialization List 1/3

(Any) Member variables should be initialized by constructors with
initialization lists or by using brace-or-equal-initializer syntax

const and reference data members must be initialized by using
the initialization lists.

struct A {
char a;
const float b;
const int c = 3; // default initialization
int* ptr { nullptr }; // default initialization(C++11)

A(char c1) : c(c1), b(1.2f) {} // direct initilization

A() : c{'a'}, b{1.2f} {} // uniform initialization(C++11)

// A() : C('a') {} // compile error: b is const
}; 13/73

Initialization List (Uniform Initialization) 2/3

C++11
Definition (Uniform Initialization)
Uniform Initialization expands on the Initializer List syntax, to
provide a syntax that allows for fully uniform type initialization
that works on any object

• Minimizing Redundant Typenames
- In function arguments
- In function returns

• Solving the “Most Vexing Parse” problem
- Constructor interpreted as function prototype

To not confuse with narrowing conversion

Full details:
mbevin.wordpress.com/2012/11/16/uniform-initialization/

14/73

mbevin.wordpress.com/2012/11/16/uniform-initialization/

Initialization List (Uniform Initialization) 3/3
struct A {

int a1, a2;
};

class B {
int b1, b2;

public:
B() : b1(1), b2(2) {}
B(int x1, int x2) : b1(x1), b2(x2) {}

};

A f() {
return { 1, 2 }; // ok, works also for B

}
B f() {

return B(); // B() maybe also a function
} // ``Most Vexing Parse" problem

// solved with B{}
struct C {
// B b (1, 2); // compile error

B b { 1, 2 }; // ok, call the constructor
};

15/73

Class Constructor (explicit Keyword) 6/6

C++11
Definition
The explicit specifier specifies that a constructor or conversion
function doesn’t allow implicit conversions or copy-initialization

struct A {
A(int) {}
A(int, int) {}

};

struct B {
explicit B(int) {}
explicit B(int, int) {}

};

int main() {
A a1 = 1; // ok (implicit)
A a2(2); // ok
A a3 {4, 5}; // ok. Selected A(int, int)
A a4 = {4, 5}; // ok. Selected A(int, int)

//B b1 = 1; // error: implit conversion
B b2(2); // ok
B b3 {4, 5}; // ok. Selected A(int, int)
//B b4 = {4, 5}; // error: implit conversion
B b5 = (B)1; // OK: explicit cast

}

16/73

Class Constructor (Copy Constructor) 1/3

Definition (Copy Constructor)
A copy constructor is a special type of constructor used to create
a new object as a copy of an existing object.

Every class always define an implicit or explicit copy constructor.
Note: in class the implicit copy constructor is marked as private

The default constructor of a class is marked as deleted if
(simplified):

• Every non-static class type (or array of class type) member has a
valid (accessible, not deleted, not ambiguous) copy constructor

• Every base classes has a valid (accessible, not deleted, not
ambiguous) copy constructor

• It has a base class with a deleted or inaccessible destructor
• The class has no move constructor (next slides) 17/73

Copy Constructor 2/3

class A {
public:

int x;
A() {}
A(const A& obj) : x(obj.x) {} // User-defined copy constructor

};

class B : public A {
public:

int array[3];
B() : array{1,2,3} {}

};

int main() {
B c, d;
c = d; // call "B" user-declared copy constructor, then

// call "A" implicitly-declared copy constructor
} 18/73

Copy Constructor 3/3

The copy constructor is used to:

• Initialize one object from another of the same type
- Direct constructor
- Assignment operator

• Copy an object to pass it as an argument to a function
• Copy an object to return it from a function

class A {
public:

A() {}
A(const A& obj) {}

};

void f(A a) {}

void g() { return A(); };

int main() {
A a;
A b = a; // copy constructor (assignment)

A c(b); // copy constructor (direct)

f(b); // copy constructor (argument)
// copy constructor (return value)
A d = g(); // but see RVO optimization

} 19/73

Class Constructor (default keyword) 1/2

In C++11, it is possible to use the compiler-generated version of
special functions as default/copy constructors, so you don’t need
to specify a body

struct A {
int a;
A() : a(1) {}

};

struct B : A {
B() = default; // call A()
B(const B& b) = default; // copy constructor

};

The defaulted default constructor has exactly the same effect as a
user-defined constructor with empty body and empty initializer list

20/73

Class Constructor (default keyword) 2/2

When compiler-generated constructor is useful:

• Define any constructor different from the default constructor
disables implicitly-generated default constructor

• Default/copy constructors from classes are marked private

struct A {
A(int a) {} // disable implicitly-defined default construtor
A() = default; // now A has the default constructor

};

class B { // default/copy constructor marked private
public:

B() = default; // default constructor now is public
B(const B& b) = default; // copy constructor now is public

};

21/73

Class Destructor 1/2

Definition (Destructor [dtor])
A destructor is a special member function of a class that is
executed whenever an object of it’s class goes out of scope or
whenever the delete expression is applied to a pointer to the
object of that class.

• A destructor will have exact same name as the class prefixed
with a tilde (∼)

• A destructor does not have any return type
• Each object has exactly one destructor
• A destructor is useful for releasing resources before the class

instance goes out of scope or it is deleted

22/73

Class Destructor 2/2

struct A {
int* array;

A() { // constructor
array = new int[10];

}

∼A() { // destructor
delete[] array;

}
};

int main() {
A a; // call the constructor
for (int i = 0; i < 5; i++)

A b; // call 5 times the constructor and the destructor
// call the destructor of "a"

} 23/73

Class Destructor (Order of Calls) 3/3

Class destructor is never inherited. Base class destructor is
invoked after the current class destructor.

Class destructors are called in reverse order
struct A {

∼A() { std::cout << "A"; }
};
struct B {

∼B() { std::cout << "B"; }
};
struct C : A {

B b;
∼C() { std::cout << "C"; }

};

int main() {
B b; // print "C", then "B", then "A"

} 24/73

RAII Idiom - Resource Acquisition is Initialization

Holding a resource is a class invariant, and is tied to object
lifetime.

Implication: C++ programming language does not require the
garbage collector!!

RAII Idiom consists in three steps:

• Encapsulate a resource into a class (in the constructor
usually).

• Use the resource via a local instance of the class.
• The resource is automatically releases when the object gets

out of scope.

25/73

Class Keywords

this Keyword

Definition
Every object in C++ has access to its own address through a
pointer called this pointer

The this const pointer is a hidden parameter implicitly added to
any member function. In general, it is not needed
When this is necessary:

• The name of a local variable is equal to some member name
• Return reference to the calling object

struct A {
int x;
void f(int x) {

this->x = x; // without "this" has no effect
}
const A& g() {

return *this;
}

};
26/73

static Keyword 1/3

Definition (static Keyword)
The keyword static declares members (fields or methods) that
are not bound to class instances. A static member is shared by
all objects of the class

• It can be called/used without an instance of a class
• A static member function cannot access non-static class

members
• All static data is initialized to zero/default if no

user-initialization is provided
• It can be initialized (defined) only once
• Static data members cannot be inline initialized

27/73

static Keyword 2/3

struct A {
int y = 2;
// static int x = 3; // compile error: inline initialization
static int x; // declaration
static int z[]; // declaration (incomplete type)
static int g(); // declaration

static int f() { return x * 2; }
// static int f() { return y; } // compile error (non-static)

};
int A::x = 3; // definition
int A::z[] = {1, 2, 3}; // definition
int A::g() { return z[1]; } // definition

int main() {
A::x++;
cout << A::x; // print 4
cout << A::f(); // print 8

}
28/73

static Keyword (Constant static members) 3/3

Constant static members
If a static data member of is declared const or constexpr , it
can be initialized with an initializer in which every expression is a
constant expression

constexpr int f(int a) { return a * 2}

struct A {
static const int x = f(3); // ok
static const int y; // ok
static const char* z = "ab"; // ok

// static constexpr float v; // compile error
static constexpr int v[] = {1, 2}; // ok

};
const int A::y = 3;

29/73

const Keyword 1/2

Definition (Const member functions)
Const member functions, or (inspectors), should be used to
mean the method won’t change the object’s state.

Member functions without a const suffix are called non-const member
functions or mutators

The compiler prevent callers from inadvertently mutating/changing
object with functions marked as const

class A {
int x = 3;

public:
int get() const {

// x = 2; // compile error
return x;

}
};

In-depth description: isocpp.org/wiki/faq/const-correctness

30/73

isocpp.org/wiki/faq/const-correctness

const Keyword (Const Overloading) 2/2

The const keyword is part of the functions signature which
means that you can implement two similar methods, one which is
called when the object is const , and one that isn’t
class A {

int x = 3;
public:

int get1() { return x; }
int get1() const { return x; }
int get2() { return x; }

};
int main() {

A a1;
std::cout << a1.get1(); // ok
std::cout << a1.get2(); // ok
const A a2;
std::cout << a2.get1(); // ok
//std::cout << a2.get2(); // compile error: a2 is const

}
31/73

mutable Keyword

Definition (mutable)
mutable members of const class instances are modifiable

Constant references or pointers to objects cannot modify that
object in any way, except for data members marked mutable

• It is particularly useful if most of the members should be constant
but a few need to be modified

• Conceptually, mutable members should not change anything that
can be retrieved from your class interface

struct A {
int x = 3;
mutable int y = 5;

};

int main() {
const A a;
//a.x = 3; // compiler error (const)
a.y = 5; // ok

}
32/73

using Keyword

The using keyword can be used to change the inheritance
attribute of member data or functions
class A {
protected:

int x = 3;
};

class B : A {
public:

using A::x;
};

int main() {
B b;
b.x = 3;

}
33/73

friend Keyword 1/3

Definition (friend Class)
A friend class can access the private and protected
members of the class in which it is declared as a friend.

Friendship properties:

• Not Symmetric: if class A is a friend of class B, class B is not
automatically a friend of class A

• Not Transitive: if class A is a friend of class B, and class B is
a friend of class C, class A is not automatically a friend of
class C

• Not Inherited: if class Base is a friend of class X, subclass
Derived is not automatically a friend of class X; and if class X
is a friend of class Base, class X is not automatically a friend
of subclass Derived 34/73

friend Keyword 2/3

class A; // class declaration

class B {
int y = 3; // private
int f(A a);

};

class A {
friend class B;
int x = 3; // private
int f(B b);

};

int B::f(A a) { return a.x; } // ok
int A::f(B b) { return b.y; } // compile error (no symmetric)

class C : B {
int f(A a) { return a.x; } // compile error (no inherited)

};
35/73

friend Keyword 3/3

Definition (friend Method)
A non-member function can access the private and protected
members of a class if it is declared a friend of that class.

class A {
int x = 3; // private

friend int f(A a);
};

//'f' is not a member function of any class
int f(A a) {

return a.x;
}

36/73

delete Keyword 1/2

Definition (delete Keyword)
The delete keyword explicitly marks a member function as
deleted and any use results in a compiler error. If applied to
Copy/Move constructor or assignment prevents the compiler to
implicitly generate these functions

Using the default copy/move functions for a class in a hierarchy can
produce unexpected results. The keyword delete prevents these kind
of errors
struct A {

A(const A& a) = delete;
};

// e.g. if a class uses heap memory
void f(A a) {} // the copy construct should be

// written by the user
int main() {

f(A()); // compile error (marked as deleted)
}

37/73

Polymorphism

Polymorphism

Definition (Polymorphism)
In object-oriented programming, polymorphism (meaning
“having multiple forms”) is the characteristic of being able to
assign a different meaning or usage to something in different
contexts - specifically, to allow an entity such as a variable, a
function, or an object to have more than one form.

• At run time, objects of a derived class may be treated as objects of a base
class

• Base classes may define and implement virtual methods, and derived
classes can override them, which means they provide their own defini-
tion and implementation invoked at run-time depending on the context

Overloading is a form of static polymorphism (compile-time polymorphism)
In C++ the term polymorphic is strongly associated with dynamic
polymorphism (overriding) 38/73

Polymorphism (the problem) 1/2

struct A {
void f() { std::cout << "A"; }

};

struct B : A { // B extends A (B does something more than A)
void f() { std::cout << "B"; }

};

void g(A& a) { a.f(); } // accepts A and B

void h(B& b) { b.f(); } // accepts only B

int main() {
A a; B b;
g(a); // print "A"
g(b); // print "A" not "B"!!!
// h(a); // compile error
h(b); // print "B"

}
39/73

Function Binding

Connecting the function call to the function body is called Binding
• In Early Binding or Static Binding or Compile-time Bind-

ing, the compiler identifies the type of object at compile-time.

• In Late Binding or Dynamic Binding or Run-time binding,
the compiler identifies the type of object at run-time and then
matches the function call with the correct function definition.

In C++ late binding can be can be achieved by declaring a
virtual function

• Early binding : the program can jump directly to the function
address

• Late binding : the program has to read the address held in the
pointer and then jump to that address (less efficient since it
involves an extra level of indirection) 40/73

Polymorphism (virtual method) 1/2

struct A {
virtual void f() { std::cout << "A"; }

};

struct B : A { // B extends A (B does something more than A)
void f() { std::cout << "B"; }

};

void g(A& a) { a.f(); } // accepts A and B

void h(B& b) { b.f(); } // accepts only B

int main() {
A a; B b;
g(a); // print "A"
g(b); // NOW, print "B"!!!
h(b); // print "B"

} 41/73

Virtual Table

Definition (vtable)
The virtual table (vtable) is a lookup table of functions used to
resolve function calls and support dynamic dispatch (late binding)

A virtual table contains one entry for each virtual function that can be
called by objects of the class. Each entry in this table is simply a function
pointer that points to the most-derived function accessible by that class

The compiler adds a hidden pointer to the base class which points to the
virtual table for that class (sizeof considers the vtable pointer)

42/73

Virtual Method Notes

virtual classes allocate one extra pointer (hidden)

class A {
double x;
virtual void f1();
virtual void f2();

}

sizeof(A) = sizeof(double) + 1 * sizeof(pointer)

The virtual keyword is not necessary in derived classes, but it
improves readability and clearly advertises the fact to the user that
the function is virtual

43/73

override Keyword

C++11
Definition (override Keyword)
The override keyword ensures that the function is virtual and
is overriding a virtual function from a base class

It force the compiler to check the base class to see if there is a
virtual function with this exact signature.

• override implies virtual (virtual should be omitted)
struct A {

virtual void f(int a);
};

struct B : A {
void f(int a) override; // ok
void f(float a); // (still) very dangerous!!

// void f(float a) override; // compile error
// void f(int a) const override; // compile error
};
// f(3.3f) has different behavior between A and B 44/73

final Keyword

C++11
Definition (final Keyword)
The final keyword prevent inheriting from classes or prevent
overriding methods in derived classes

struct A {
virtual void f(int a) final; // final method

};

struct B : A {
// void f(int a); // compile error: f(int) is final

void f(float a); // dangerous!! (still possible)
};

struct C final { // cannot be extended
};
struct D : C { // compile error: C is final
};

45/73

Virtual Methods (Common Error 1)

All classes with at least one virtual method should declare
a virtual destructor

struct A {
∼A() { std::cout << "A"; } // <-- here the problem
virtual void f(int a) {}

};
struct B : A {

∼B() { std::cout << "B"; }
};

void g(A* a) {
delete a;

}

int main() {
B* b = new B;
g(b); //without virtual, g() prints only "A"

}
46/73

Virtual Methods (Common Error 2)

Don’t call virtual methods in constructor and destructor
• Constructor : The derived class is not ready until constructor

is completed
• Destructor : The derived class could be already destroyed

struct A {
A() { f(); } // what instance is called?

virtual void f() { std::cout << "A"; }
};

struct B : A {
B() : A() {}

void f() { std::cout << "B"; }
};

int main() {
B b; // print "A", not "B"!!

}
47/73

Virtual Methods (Common Error 3)

Don’t use default parameters in virtual methods
Default parameters are not inherited
struct A {

virtual void f(int x = 3) {
std::cout << "A";

}
};

struct B : A {
void f(int x) {

std::cout << "B";
}

};

int main() {
B b;
b.f(); // print "A", not "B"!!

}
48/73

Pure Virtual Method

Definition (Pure Virtual Method)
A pure virtual method is a function that must be implemented
in derived classes (concrete implementation)

Pure virtual functions can have or not have a body
struct A {

virtual void f(int x) = 0; // pure virtual without body
virtual void g(int x) = 0; // pure virtual with body

};

void A::g() {} // pure virtual implementation for g()

struct B : A {
void f(int x) {} // must be implemented
void g(int x) {} // must be implemented

};
49/73

Pure Virtual Method

If a virtual method is not implemented in derived class, it is
implicitly declared pure virtual
struct A {

virtual void f(int x) = 0;
};

struct B : A {
// virtual void f(int x) = 0; // implicitly declared
};

struct C : B {
void f(int x) override {} // implemented

};

int main() {
C c;
c.f(); // ok

}
50/73

Abstract Class and Interface

• A class is abstract if it has at least one pure virtual function

• A class is interface if it has only pure virtual functions and
optionally (suggested) a virtual destructor. Interfaces don’t
have implementation or data

struct A { // INTERFACE
virtual ∼A(); // to implement
virtual void f(int x) = 0;

};

struct B { // ABSTRACT CLASS
B() {} // abstract classes may have a contructor
virtual void g(int x) = 0; // at least one pure virtual

protected:
int x; // additional data

};
51/73

Virtual Methods (Virtual Contructor)

Virtual Constructor is not supported in C++, but can be emulated
by using other virtual methods
struct A {

virtual ∼A() { } // A virtual destructor
virtual A clone() const = 0; // Uses the copy constructor
virtual A create() const = 0; // Uses the default constructor

};

struct B : A {
B clone() const { // Covariant Return Types

return B(*this); // (different from A::clone())
}

B create() const { // Covariant Return Types
return B(); // (different from A::create())

}
};

void f(A& a) {
B b = a.clone(); // ok

}
52/73

Operator Overloading

Operator Overloading

Definition (Operator Overloading)
Operator overloading is a specific case of polymorphism in
which some operators are treated as polymorphic functions and
as such have different behaviors depending on the types of its
arguments
struct Point {

int x, y;
Point(int x1, int y1) : x(x1), y(y1) {}

Point operator+(const Point& p) const {
return Point(x + p.x, y + p.x);

}
};

int main() {
Point a(1, 2);
Point b(5, 3);
Point c = a + b; // "c" is (6, 5)

}
53/73

Operator Overloading

Syntax: operator@

Categories not in bold are rarely used in practice

Arithmetic: + - * \ % ++ --

Comparison: == != < <= > >=

Bitwise: | & ˆ ∼ << >>

Logical: ! && ||

Compound assignment: += <<= *= , etc.

Subscript: []

Address-of, Reference,
Dereferencing:

& -> ->* *

Memory: new new[] delete delete[]

Comma: ,

Operators which cannot be overloaded: ? . .* :: sizeof typeof 54/73

Notes

• Increment, Decrement: Prefix and Postfix notation
struct A {

A& operator++() { // prefix: ++obj
...
return *this;

}
A& operator++(const A& a); // postfix: obj++

};

• Array subscript operator accepts anything (not only integer)
struct A {

some_t& operator[](char a); // write
const some_t& operator[](char a) const; // read

};

• Operators preserve precedence and short-circuit properties (e.g. ˆ)
• operator< is used in comparison procedures (std::sort)

55/73

Binary Operators

Binary Operators should be implemented as friend methods
class A {};

class B : public A {
bool operator==(const A& a) { return true; }

};

class C : public A {
friend bool operator==(const A& a, const A& b);

};

bool C::operator==(const A& a, const A& b); { return true; }

int main() {
A a; B b; C c;
b == a; // ok

// a == b; // compile error // friend is useful to access
c == a; // ok // private fields
a == c; // ok

} 56/73

Special Operators (iostream operator<<)

The stream operations can be overloaded to perform input and
output for user-defined types
include <iostream>
struct Point {

int x, y;

//may be also directly defined inside Point
friend std::ostream& operator<<(std::ostream& stream,

const Point& point);
};

std::ostream& operator<<(std::ostream& stream,
const Point& point) {

stream << "(" << point.x << "," << point.y << ")";
return stream;

}

int main() {
Point point { 1, 2 };
std::cout << point; // print "(1, 2)"

}
57/73

Special Operators (function call operator())

The function call operator is generally overloaded to create
objects which behave like functions, or for classes that have a
primary operation

Many algorithms (included std library) accept objects of such
types to customize behavior
include <iostream>
include <numeric> // for std::accumulate
struct Multiply {

int operator()(int a, int b) const {
return a * b;

}
};
int main() {

int array[] = { 2, 3 ,4 };
int mul = std::accumulate(arrray, array + 3, 0, Multiply());
std::cout << mul; // 24

}
58/73

Special Operators (conversion operator type())

Conversion operators enable objects of a class to be either
implicitly (coercion) or explicitly (casting) converted to another
type
class MyBool {

int a;
public:

MyBool(int a1) : a(a1) {}

operator bool()(const MyBool& b) const {
return b.a == 0; // implicit return type

}
};

int main() {
MyBool my_bool { 3 };
bool b = my_bool; // b = false, call operator bool()

} 59/73

Special Operators (conversion operator type() + explicit)

Conversion operators can be marked explicit to prevent
implicit conversions:
struct A {

operator bool() { return true; }
};

struct B {
explicit operator bool() { return true; }

};

int main() {
A a;
B b;
bool c = a;

// bool c = b; // compile error : explicit
bool c = static_cast<bool>(b);

} 60/73

Special Operators (assignment operator=)

The assignment operator (operator=) is used to copy values
from one object to another already existing object
include <algorithm> //std::fill, std::copy
struct A {

char* array;
int size;

A(int size1, char value) : size(size1) {
array = new char[size];
std::fill(array, array + size, value);

}
∼A() { delete[] array; }

A& operator=(const A& x) { } // see next slide
};

int main() {
A obj(5, 'o'); // ["ooooo"]
A a(3, 'b'); // ["bbb"]
obj = a; // obj = ["bbb"]

}
61/73

Special Operators (assignment operator=)

• First option:
A& operator=(const A& x) {

if (this == &x) // Check for self assignment
return *this;

delete[] array; // delete everything from this
array = new int[x.size];
std::copy(x.array, x.array + size, array); // copy
return *this;

}

• Second option (less intuitive):
A& operator=(A x) { // pass by value: need a copy constructor

swap(this, x); // now we need a swap function for A
return *this; // see next slide

} // x is destroyed at the end

Full story: stackoverflow.com/questions/3279543

62/73

stackoverflow.com/questions/3279543

Special Operators (assignment operator=)

• Swap method:
friend void swap(A& x, A& y) {

using std::swap;
swap(x.size, y.size);
swap(x.array, y.Array);

}

• why using std::swap? if swap(x, y) finds a better match,
it will use that instead of std::swap

• why friend? it allows the function to be used from outside
the structure/class scope

Full story: stackoverflow.com/questions/5695548 63/73

stackoverflow.com/questions/5695548

C++ Special Objects

Aggregate 1/3

Definition (Aggregate)
An aggregate is a type which supports aggregate initialization
(form of list-initialization) through curly braces syntax {}

An aggregate is an array or a class with
• No user-provided constructors (all)
• No private/protected non-static data members
• No base classes
• No virtual functions (standard functions allowed)
* No brace-or-equal-initializers for non-static data members

(until C++14)

No restrictions:
• Non-static data member (can be also not aggregate)
• Static data members

Full story: stackoverflow.com/questions/4178175
64/73

stackoverflow.com/questions/4178175

Aggregate (examples) 2/3
struct NotAggregate1 {

NotAggregate1(); // No constructors
virtual void f(); // No virtual functions

};

class NotAggregate2 : NotAggregate1 { // No base class
int x; // x is private

};

struct Aggregate1 {
int x;
int y[3];
int z { 3 }; // only C++14

};

struct Aggregate2 {
Aggregate1() = default; // ok, defaulted constructor
NotAggregate2 x; // ok, public member
Aggregate2& operator=(const& Aggregate2 obj); // ok

private: // copy-assignment
void f() {} // ok, private function (no data member)

};
65/73

Aggregate (examples) 3/3

struct Aggregate1 {
int x;
struct Aggregate2 {

int a;
int b[3];

} y;
};

int main() {
int array1[3] = { 1, 2, 3 };
int array2[3] { 1, 2, 3 };
Aggregate1 agg1 = { 1, { 2, { 3, 4, 5} } };
Aggregate1 agg2 { 1, { 2, { 3, 4, 5} } };
Aggregate1 agg3 = { 1, 2, 3, 4, 5 };

}

66/73

Trivial Class 1/2

Definition
A Trivial Class is a class trivial copyable (supports memcpy)

Trivial copyable:
• No user-provided copy/move/default constructors and

destructor
• No user-provided copy/move assignment operators
• No virtual functions (standard functions allowed) or virtual

base classes
• No brace-or-equal-initializers for non-static data members
• All non-static members are trivial (recursively for members)

No restrictions:
• Other user-declared constructors different from default
• Static data members
• Protected/Private members 67/73

Trivial Class (examples) 2/2

struct NonTrivial1 {
int y { 3 }; // brace-or-equal-initializers

NonTrivial1(); // user-provided constructor
virtual void f(); // virtual function

};

struct Trivial1 {
Trivial1() = default; // defaulted constructor
int x;
void f();

private:
int z; // ok, private

};

struct Trivial2 : Trivial1 { // base class is trivial
int Trivial1[3]; // array of trivials is trivial

}; 68/73

Standard-Layout Class 1/2

Definition
A standard-layout class is a class with the same memory layout
of the equivalent C struct or union (useful for communicating
with other languages)

Standard-layout class

• No virtual functions or virtual base classes
• Recursively on non-static members, base and derived classes
• Only one control access (public/protected/private) for

non-static data members
• No base classes of the same type as the first non-static data

member
(a) No non-static data members in the most derived class and at

most one base class with non-static data members
(b) No base classes with non-static data members 69/73

Standard-Layout Class (examples) 2/2

struct StandardLayout1 {
StandardLayout2(); // user-provided contructors
int x;
void f(); // non-virtual function

};

class StandardLayout2 : StandardLayout1 {
int x, y; // both are private
StandardLayout1 y; // can have members of base type

// if they are not the first
};

struct StandardLayout3 { } //empty

struct StandardLayout4 : StandardLayout2, StandardLayout3 {
// can use multiple inheritance as long only
// one class in the hierarchy has non-static data members

}; 70/73

Plain Old Data (POD)

C++11, C++14 Standard-Layout (s) + Trivial copyable (t)

(t) No user-provided copy/move/default constructors and
destructor

(t) No user-provided copy/move assignment operators
(t) No virtual functions or virtual base classes
(t) No brace-or-equal-initializers for non-static data member
(s) Recursively on non-static members, base and derived classes
(s) Only one control access (public/protected/private) for

non-static data members
(s) No base classes of the same type as the first non-static data

member
(s)a No non-static data members in the most derived class and at

most one base class with non-static data members
(s)b No base classes with non-static data members 71/73

C++ std Utilities

C++11 provides three utilities to check if a type is POD, Trivial
Copyable, Standard-Layout

• std::is pod checks for POD
• std::is trivially copyable checks for trivial copyable
• std::is standard layout checks for standard-layout

include <type_traits>
struct A {

int x;
private:

int y;
};
int main() {

std::cout << std::is_trivial_copyable<A>::value; // true
std::cout << std::is_standard_layout<A>::value; // false
std::cout << std::is_pod<A>::value; // false

}

72/73

Special Objects Hierarchy

73/73

	C++ Classes
	Class Keywords
	Polymorphism
	Operator Overloading
	C++ Special Objects

