Modern C++
Programming

11. CopE CONVENTIONS

Federico Busato

University of Verona, Dept. of Computer Science
2020, v3.01

Table of Context

C++ Project Organization
m Project Directories
m Project Files

m src/include directories

Coding Styles and Conventions
m Coding Styles

#include and namespace

1/60

Table of Context

B Variables and Prepossessing
B Functions and Classes

@ Modern C++4 Features
Control Flow

BH Naming and Formatting

2/60

C++ Project
Organization

Project Organization

Project
 m—

Root = =
bin build | doc
- submodules - third_party - data
- tests - examples - utils

2
mclude src
m] m]
== |LICENSE = | README.md

Q CMakelLists.txt Q Doxyfile Q .gitignore
ﬁ .clang-tidy Q .clang-format

3/60

Project Directories

Fundamental directories

include Project (public) header files
src Project source files and private headers

tests Source files for testing the project

Empty directories
bin Output executables
build All intermediate files

doc Project documentation

4/60

Project Directories

Optional directories
submodules Project submodules

third party (less often deps/external/extern)
dependencies or external libraries

data Files used by the executables or for testing
examples Source files for showing project features

utils (or script) Scripts and utilities related to the
project

cmake CMake submodules (.cmake)

5/60

Project Files

LICENSE Describes how this project can be used and
distributed*

README.md General information about the project in Markdown
format, * 1

CMakeLists.txt Describes how to compile the project

Doxyfile Configuration file used by doxygen to generate the
documentation (see next lecture)

others .gitignore, .clang-format, .clang-tidy, etc.

* Markdown is a language with a syntax corresponding to a subset of HTML
tags github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

1 See embedded-artistry-readme-template for guidelines

N _ . 6/60
Choose an open source license choosealicense.com

github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://embeddedartistry.com/blog/2017/11/30/embedded-artistry-readme-template
https://choosealicense.com/

File extensions

Common C++ file extensions:
= header .h .hh .hpp .hxx

= header implementation
= .i.h, .i.hpp, —inl.h, .inl.hpp
= separate implementation in standard header

= inline implementation in standard header (GOOGLE)

m SIC .C .CC .Cpp .CXX

Common conventions:
= .h .c .cc GOOGLE
= hh .cc

* .hpp .cpp
= _hxx .cxx 7/60

src/include directories

src/include directories should present exactly the same
directory structure

Every directory included in include should be also present in

Src

Organization:
= Public headers in include

= source files, private headers, header implementations in

Src

= The main file (if present) can be placed in src and called
main.* or placed in the project root directory with an

arbitrary name

8/60

Common Rules

The file should have the same name of the
class/namespace that they implement

= class MyClass
my_class.hpp (MyClass.hpp)
my_class.i.hpp (MyClass.i.hpp)
my_class.cpp (MyClass.cpp)

* namespace my._np
my np.hpp (MyNP.hpp)
my_np.i.hpp (MyNP.i.hpp)
my np.cpp (MyNP.cpp)

9/60

Code Organization Example

= include = main.cpp (if necessary)

- my_classl.hpp README . md

- my_templ_class.hpp
= subdirl
- my_lib.hpp = Doxyfile

= CMakeLists.txt

= Src = LTCENSE
- cilk 1.
y-erasst-epp = build (empty)
- my_templ_class.i.hpp

- my_templ_class.cpp = bin (empty)

(specialization) = doc (empty)
= subdirl
= test
- my_lib.i.hpp
(template/inline functions) - testl.cpp
- test2.cpp

- my_lib.cpp 10/60

Coding Styles and
Conventions

“one thing people should re-
member is there is what you

can do in a language and what

you should do”

Bjarne Stroustrup

11/60

Most important rule:
BE CONSISTENT!!

“The best code explains itself”
GOOGLE

12/60

Code Quality

“The worst thing that can happen to a code base is size”

— Steve Yegge
LAST PUSH

WELCOME TO

/& ‘ PURGATORY

ILL JUST CHECK
YOUR CODE QUALITY

13/60

MONKEYUSER. COM

Bad Code

How my code looks like for other people?

HIS WHAT 15 ALL
WHY 15 T THIS cRap 3

STRUCTURE HERE 7 THIS SIGN DOESN'T

HELP ME MUCH.

/

® = oy

I

i

GooD GoD! WHAT THE HELL

WHAT A HORRIBLY DESIGNED
DOES THIS CONTRAPTION Do7?

STREET, MOST INEFFICIENT.

“
S /‘;—55&5

"

abstrusegoose.com/432

https://abstrusegoose.com/432

Coding Styles

Coding styles are common guidelines to improve the
readability, maintainability, prevent common errors, and make
the code more uniform

Most popular coding styles:

= LLVM Coding Standards
1lvm.org/docs/CodingStandards.html

= Google C++ Style Guide
google.github.io/styleguide/cppguide.html

15/60

https://llvm.org/docs/CodingStandards.html
https://google.github.io/styleguide/cppguide.html

Coding Styles

= Webkit Coding Style
webkit.org/code-style-guidelines

= Mozilla Coding Style

developer.mozilla.org

= Chromium Coding Style
chromium.googlesource.com

ct++-dos-and-donts.md

= Unreal Engine

docs.unrealengine.com/en-us/Programming

» nOS++
micro-os-plus.github.io/develop/coding-style

micro—os—plus.github.io/develop/naming—conventionslﬁ/60

https://webkit.org/code-style-guidelines/
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Coding_Style#CC_practices
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++-dos-and-donts.md
https://docs.unrealengine.com/en-us/Programming/Development/CodingStandard
https://micro-os-plus.github.io/develop/coding-style/
https://micro-os-plus.github.io/develop/naming-conventions/

% — Important!
Highlight potential code issues such as bugs, inefficiency,
and can compromise readability. Should not be ignored

* — Useful
It is not fundamental but it emphasizes good practices.

Should be followed if possible

= — Minor / Obvious
Style choice or not very common issue

17/60

#include and

namespace

% Every includes must be self-contained
- the project must compile with any include order
- do not rely on recursive #include

* Include as less as possible, especially in header files
- do not include unneeded headers
- it is not in contrast with the previous rule

LLVM, GooGLE, CHROMIUM, UNREAL

= include guard vs. #pragma once

- Use include guard if portability is a strong requirement
GOOGLE, CHROMIUM

- #pragma once otherwise for performance WEBKIT, UNREAL

= #include preprocessor should be placed immediately after the

header comment and include guard LLVMIS/60

#include 2/3

Order of #include LLVM, GOOGLE

(1) Main Module Header (it is only one)
(2) Local project includes (in alphetical order)
(3) System includes (in alphetical order)

System includes are self-contained, local includes might not

Project includes LLVM, GOOGLE

* Use "" syntax
* Should be absolute paths from the project include root
€.g. #include "directoryl/header.hpp"

System includes LLVM, GOOGLE

* Use <> syntax

€.g. #include <iostream>
19/60

F#include

* Use C++ headers instead of C headers:
<cassert> instead of <assert.h>
<cmath> instead of <math.h>, etc.

= Report at least one function used for each include

<iostream> // std::cout,
Example:
#include "MyClass.hpp"

#include

#1include

#1include
#include

#1include

"my_dir/my_headerA.hpp"

n

"my_dir/my_headerB. hpp

<gostream>
<cmath>

<vector>

std::cin

// MyClass

[blank line]

// npA::ClassA, npB::f2()
// np::gQ0)

[blank line]

// std::cout

// std::fabs()

// std::vector

20/60

Namespaces

% Avoid using namespace -directives at global scope
LLVM, GoocGLE, WEBKIT, UNREAL, HiC

* Limit using namespace -directives at local scope and prefer
explicit namespace specification GoocGLE, WEBKIT

% Always place code in a namespace to avoid global namespace
pollution GOOGLE, WEBKIT

* Avoid anonymous namespaces in headers GOOCGLE

= Prefer anonymous namespaces instead of static variables

GOOGLE
21/60

Namespaces

Style guidelines:

= The content of namespaces is not indented
GOOGLE, WEBKIT

= Close namespace declarations
} // namespace <namespace identifier> LLVM

} // namespace (for anonymous namespaces) GOOGLE

Unnamed namespaces:

= Items local to a source file (e.g. .cpp) file should be wrapped in an
unnamed namespace. While some such items are already file-scope
by default in C4++, not all are; also, shared objects on Linux builds
export all symbols, so unnamed namespaces (which restrict these
symbols to the compilation unit) improve function call cost and

reduce the size of entry point tables CHROMIUM
22/60

Variables and
Prepossessing

Variables

% Place a variables in the narrowest scope possible, and always
initialize variables in the declaration
GOOGLE, Isocpp, MoziLLA, HiC

= Use assignment syntax = when performing "simple*
initialization or for constructors CHROMIUM

= Avoid static global variables LLVM, GOOGLE

= Declaration of pointer/reference variables or arguments may
be placed with the asterisk/ampersand adjacent to either the
type or to the variable name for all in the same way GOOGLE
= char* c; WEBKIT, I\EZILLA, CHROMIUM, UNREAL
= char *c;

= char * c;
23/60

Variables 2/2

% Use fixed-width integer type (e.g. int64_t, int8.t, etc.).
Exception: int and unsigned GOOGLE, UNREAL

* Use size_ t for object and allocation sizes, object counts,
array and pointer offsets, vector indices, and so on. (integer
overflow behavior for signed types is undefined) CHROMIUM

* Use int64_t instead of size_t for object counts and loop
indices GOOCLE

= Use brace initialization to convert arithmetic types
(narrowing) e.g. int64_t{x} GOOGLE

* Use true, false for boolean variables instead numeric

values 0, 1 WEBKIT24/6O

Variables 2/2

% Do not shift < signed operands Hic
% Do not directly compare floating point ==, <, etc. Hic

= Do not use auto to deduce a raw pointer/reference. Use
auto* / auto& instead

Style:

= Use floating-point literals to highlight floating-point data
types, e.g. 30.0f WEBKIT (opposite)

= Avoid redundant type, e.g. unsigned int, signed int
WEBKIT

25/60

Macro and Preprocessing

Code guidelines:
% Avoid defining macros, especially in headers GOOCLE
% #undef macros wherever possible

% Prefer const values and inline functions to #define
WEBKIT

% Do not use macro for enumerator, constant, and functions

X

Always use curly brackets for multilines macro

#define MACRO
{

\
\
linel; \
\

line2;

26/60

Macro and Preprocessing 2/2

Style:

= Close #endif with the respective condition of the first #if
#if defined (MACRD)

#endif // defined(MACRO)

= The hash mark that starts a preprocessor directive should

always be at the beginning of the line GOOCLE

#4if defined (MACRO)
define MACRO2
#endif

= Place the \ rightmost for multilines macro
#define MACRO2 \

macro_def. ..

s Prefer #if defined(MACRO) instead of #ifdef MACRO 27/60

Functions and
Classes

Functions

Default arguments are allowed only on non-virtual functions
GOOGLE

Prefer return values rather than output parameters GOOGLE

Limit overloaded functions GOOGLE

Do not declare functions with an excessive number of
parameters. Use a wrapper structure instead Hic

28/60

Functions

* Passing function arguments by const pointer or reference if
those arguments are not intended to be modified by the function
UNREAL

= Do not pass by-const value for built-in types, especially in the
declaration (same signature of by-value)

% Prefer pass by-reference instead by-value except for raw
arrays and built-in types WEBKIT

29/60

Functions

% Never return pointers for new objects. Use
std::unique ptr instead CHROMIUM

int* £() { return new int[10]; } // wrong!!
std: :unique_ptr<int> f() { return new int[10]; } // correct

Style guidelines:

= All parameters should be aligned if they do not fit in a single
line (especially in the declaration) GOOGLE

void f(int a,
const int* b);

= Parameter names should be the same for declaration and
definition CLANG-TIDY

= Do not use inline when declaring a function (only in the
definition) LLVM3o/60

Functions

Forward declarations vs. #includes

= Prefer forward declaration: reduce compile time, less
dependency CHROMIUM

» Prefer #include : safer GOOGLE

31/60

Structs and Classes

Code guidelines:

% Objects are fully initialized by constructor call
GooGLE, WEBKIT

= Use a struct only for passive objects that carry data;
everything else is a class GOOCLE

Minors:

= Use braced initializer lists for aggregate types A{1, 2};
LLVM, GOOGLE

= Do not use braced initializer lists {} for constructors. It can
be confused with std: :initializer_list object LLVM

= Do not define implicit conversions. Use the explicit
keyword for conversion operators and constructors GOOGLE3

2/60

Structs and Classes

Style guidelines:

% Declare class data members in special way*. Examples:
- Trailing underscore (e.g. member var_) GOOGLE, nOS
- Leading underscore (e.g. _member_var) = EDALAB, .NET

- Public members (e.g. m member_var) WEBKIT

= Class inheritance declarations order:
public, protected, private GOOCLE

= First data members, then function members

= If possible, avoid this-> keyword

*
- It helps to keep track of class variables and local function variables

- The first character is helpful in filtering through the list of available variables 33/60

Structs and Classes

struct A { // passive data structure
int X;
float y;

};

class B {
public:
BQO;

void public_function();

protected:
int _a; // in general, it is mot public in
// derived classes
void _protected_function(); // "protected_function()" is mot wrong

// it may be public in derived classes

private:
int _5%4
float _y;

void _private_function();

; 34/60

Structs and Classes

= |n the constructor, each member should be indented on a

separate line, e.g. WEBKIT, MOZILLA
A::A(int x1, int y1, int z1) :

x(x1),

y(y1),

z(z1) {

= Multiple inheritance and virtual inheritance are discouraged
GOOGLE, CHROMIUM

= Prefer composition over inheritance

35/60

Modern C4+
Features

Modern C++4 Features

Use modern C++ features wherever possible

% static_cast reiterpreter_cast instead of

old style cast (type) GOOGLE, 11OS, Hic

% Use explicit constructors / conversion operators

Use C++11/C++14/C++17 features wherever possible
% Use constexpr instead of macro GOOCLE
% Use using instead typedef
% Prefer enum class instead of plain enum UNREAL, nOS
% static_assert compile-time assertion UNREAL, Hic
% lambda expression UNREAL

% move semantic UNREA136/60

Modern C++ Features 2/3

% nullptr instead of 0 or NULL LLVM, GOOGLE, UNREAL
WEeEBKIT, MozILLA, HIC

% Use range-for loops whatever possible
LLVM, WEBKIT, UNREAL

% Use auto to avoid type names that are noisy, obvious, or

unimportant
auto array = new int[10];

auto var = static_cast<int>(var); LLVM, GOOGLE
lambda, iterators, template expression UNREAL (only)

» Use [[deprecated]] / [[noreturn]] to indicate
deprecated functions / that do not return

= Avoid throw() expression. Use noexpect instead Hicsz/60

Modern C++4 Features

Use C++11/C++14/C++17 features for classes

% Use always override/final function member keyword
WEBKIT, M0OZILLA, UNREAL, CHROMIUM

* Use braced direct-list-initialization or copy-initialization for
setting default data member value. Avoid initialization in

constructors if possible UNREAL
struct A {
int x = 3; // copy-initialization

int x { 3 }; // direct-list-initialization (best option)
Irg

= Prefer defaulted default constructor = default
MoziLLA, CHROMIUM

= Use = delete to mark deleted functions 38/60

Control Flow

Control Flow

% The if and else keywords belong on separate lines

% Each statement should get its own line

if (cl) <statementl>; else <statement2> // wrong!!

GOOGLE, WEBKIT

= Multi-lines statements and complex conditions require curly
braces GOOCLE

= Curly braces are not required for single-line statements (but
allowed) (for, while, if) GOOGLE

if (c1) { // not mandatory
<statement>

}

39/60

Control Flow

% Tests for null/non-null , and zero/non-zero should all be

done without equality comparisons WEBKIT, MOZILLA

if (!ptr) // wrong!! if (ptr == nullptr) // correct
return; return;

if (!count) // wrong!! if (count == 0) // correct
return; return;

% Prefer (ptr == nullptr) and x > 0 over
(nullptr == ptr) and 0 < x CHROMIUM

= Boolean expression longer than the standard line length requires
to be consistent in how you break up the lines GOOCLE

» Prefer empty() method over size() to check if a container

has no items MoZzILLA
40/60

Control Flow

% Avoid redundant control flow (see next slide)

- Do not use else after a return / break
LLVM, MoziLLA, CHROMIUM

- Avoid return true/return false pattern

- Merge multiple conditional statements

% Do not use goto 1OS

41/60

Control Flow

if (condition) { // wrong!!

< codel >
return;
¥
else // <-- redundant
< code2 >
/= == e
if (condition) { // Corret
< codel >
return;
¥
< code2 >
if (condition) // wrong!!
return true;
else

return false;

return condition; // Corret

42/60

Control Flow 4/4

» Use early exits (continue , break , return) to simplify the code

LLVM
for (<conditionl>) { // wrong!!
if (<condition3>)
}
Vi === == ===
for (<condition1>) { // Correct
if (!<condition3>)
continue;
}
= Turn predicate loops into predicate functions LLVM
for (<loop_condition1>) { // should be
if (<comndition2>) { // an external
var = ... // function
break; //
¥ 7/ 43/60
} V4

Naming and
Formatting

% Use always the same indentation style:

- tab — 2 spaces GOOGLE, MOZILLA
- tab — 4 spaces LLVM, WEBKIT
- tab = 4 spaces UNREAL

% Separate commands, operators, etc., by a space
LLVM, GooGLE, WEBKIT

if (axb<10&&c) // wrong!!
if (a * ¢ < 10 && c) // correct

% Line length (width) should be at most 80 characters long (or
120) — help code view on a terminal
LLVM, GOOGLE, MOZILLA

= Never put trailing white space or tabs at the end of a line

GOOGLE, MOZILLA
44/60

Naming Conventions

General rule:

% Use full words, except in the rare case where an abbreviation
would be more canonical and easier to understand WEBKIT

= Avoid short and very long names

45/60

Style Conventions

Camel style Uppercase first word letter (sometimes called Pascal
style or Capital case) (less readable, shorter names)

CamelStyle

Snake style Lower case words separated by single underscore
(good readability, longer names)

snake_style

Macro style Upper case words separated by single underscore
(sometimes called Screaming style) (good readability,
longer names)

MACRO_STYLE

46/60

Entity Names 1/2

Variable Variable names should be nouns
= Camel style e.g. MyVar LLVM, UNREAL
= Snake style e.g. my_var GOOCLE, nOS

Constant

Camel style + k prefix,
e.g. kConstantVar GOOGLE, MOZILLA

= Macro style e.g. CONSTANT_VAR WEBKIT, OPENSTACK

Enum = Camel style + k
e.g. enum MyEnum { kEnumVarl, kEnumVar2 }
GOOGLE
= Camel style
e.g. enum MyEnum { EnumVarl, EnumVar2 }

LLVM, WEBKIT
47/60

Entity Names

Namespace = Snake style, e.g. my namespace GooCGLE, LLVM
= Camel style, e.g. MyNamespace WEBKIT
Typename = Camel style (including classes, structs, enums,
typedefs, etc.)
e.g. HelloWorldClass LLVM, GooGLE, WEBKIT
= Snake style 1OS (class)

48/60

Entity Names 3/3

Function x Should be descriptive verb (as they represent actions)
WEBKIT

= Use set prefix for modifier methods WEBKIT

= Do not use get for observer (const) methods

without parameters WEBKIT
= Style:
= Lowercase Camel style, e.g. myFunc () LLVM

= Uppercase Camel style for standard functions
e.g. MyFunc() GOOGLE, MozILLA, UNREAL

= Snake style for cheap functions
e.g. my_func() GOOGLE, STD

49/60

Macro and Files

Macro Macro style

e.g. MY_MACRO GOOCLE
File = Snake style (my_file) GOOGLE
= Camel style (MyFile) LLVM

50/60

Naming and Formatting Issues

% Reserved names (do not use):
- double underscore followed by any character __var
- single underscore followed by uppercase _VAR

= Use common loop variable names
- i, j, k, 1 used in order

- it for iterators

= Prefer consecutive alignment

int varl = ...
long long int var2 = ...

51/60

Naming and Formatting Issues

% Use the same line ending (e.g. '\n') for all files
MoziLLA, CHROMIUM

% Use always the same style for braces
= Same line WEBKIT (others), MozILLA
= Its own line UNREAL, WEBKIT (function)
MoziLLA (Class)

* Do not use UTF characters for portability

* Use UTF-8 encoding for portability CHROMIUM
= Close files with a blank line MoziLLA, UNREAL
int main() { int main
code {
} code

3 52/60

Maintainability and
Code
Documentation

Maintainability

% Avoid complicated template programming GOOGLE

% Use the assert to document preconditions and assumptions
LLVM

s Prefer sizeof (variable/value) instead of
sizeof (type) GOOGLE

= Avoid if possible RTT/ (dynamic_cast) or exceptions
LLVM, GOOGLE

= Only one space between statement and comment ~ WEBKIT

= Address compiler warnings. Compiler warning messages mean
something is wrong UNREAL53/60

Code Documentation 1/2

*

*

Any file start with a license LLVM, UNREAL

Each file should include

- @author name, surname, affiliation, email
- @version

- @date e.g. year and month

- @file the purpose of the file

in both header and source files

Document methods/classes/namespaces only in header files

Include @param[in] , @param[out] , @param[in,out] ,

Q@return tags

The first sentence (beginning with @brief) is used as an
abstract 54/60

Code Documentation

= Use always the same style of comment

= Be aware of the comment style, e.g.
- Multiple lines

/%%
* commentl
* comment?2
*/

- single line
/// comment

= Prefer // comment instead of /* */ — allow string-search
tools like grep to identify valid code lines

55,/60

C++ Guidelines

C++ Guidelines

C++ Core Guidelines

Authors: Bjarne Stroustrup, Herb Sutter

@ CORE GUIDELINES

The guidelines are focused on relatively high-level issues, such as
interfaces, resource management, memory management, and
concurrency. Such rules affect application architecture and library
design. Following the rules will lead to code that is statically type
safe, has no resource leaks, and catches many more programming
logic errors than is common in code today

56,60

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

C++ Guidelines

High Integrity C++ Coding Standard (HIC++)

i PRQA

High Integrity C++
I © © ¢

Coding Standard
Version 4.0

‘wwwcodingstandard com

This document defines a set of
rules for the production of high
quality C++ code.

The guiding principles of this
standard are maintenance,
portability, readability — and

robustness

57/60

http://www.codingstandard.com/section/index/
http://www.codingstandard.com/section/index/

C++ Guidelines

CERT C++ Secure Coding

Author: Aaron Ballman

SEI CERT
C++ Coding Standard

Rules for Developing Safe, Reliable, and
Secure Systems in C++

This standard provides rules for
secure coding in the C++ pro-
gramming language.

The goal of these rules is to de-
velop safe, reliable, and secure
systems, for example by elimi-
nating undefined behaviors that
can lead to undefined program
behaviors and exploitable vul-
nerabilities

58/60

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682&src=spaceshortcut

C++ Guidelines

MISRA C++ Coding Standard

MISRA C++ provides coding stan-

@ e dards for developing safety-critical
systems.

MISRA C++:2008 The standard has been accepted
Guidelines | worldwide across all safety sectors
for the use

of the where safety, quality or reliabil-
C++ language . . .

in critical V)\\\ ity are issues of concern includ-
systely \ ing Automotive, Industrial, Medi-

cal devices, Railways, Nuclear en-

ergy, and Embedded systems

59/60

https://www.misra.org.uk/

C++ Guidelines

AUTOSAR C++ Coding Standard

AUTO SAR

AUTOSAR C++ was designed
as an addendum to MISRA
C++:2008 for the usage of the
C++14 language.

The main application sector is
automotive, but it can be used
in other embedded application
sectors

60,/60

https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf

	C++ Project Organization
	Project Directories
	Project Files
	src/include directories

	Coding Styles and Conventions
	Coding Styles

	#include and namespace
	Variables and Prepossessing
	Functions and Classes
	Modern C++ Features
	Control Flow
	Naming and Formatting
	Maintainability and Code Documentation
	C++ Guidelines

