
Modern C++
Programming
7. C++ Object Oriented

Programming I

Federico Busato

University of Verona, Dept. of Computer Science
2020, v3.03

Table of Context

1 C++ Classes
RAII

Class Hierarchy

Inheritance Attributes
2 Class Constructor

Default Constructor

Delegate Constructor

explicit Keyword

3 Copy Constructor
4 Class Destructor

1/49

Table of Context

5 Initialization and Defaulted Members
Initialization List
Uniform Initialization
Defaulted Constructor

6 Class Keywords
this

static

const

mutable

using

friend

delete

2/49

C++ Classes

C++ Classes

C/C++ Structure
A structure (struct) is a collection of variables of different data
types under a single name

C++ Class
A class (class) extends the concept of structure to hold data mem-
bers and also functions as members

Class Member/Field
The data within a class are called data members or class field.
Functions within a class are called function members or methods
of the class

struct vs. class
Structures and classes are semantically equivalent. In general,
struct represents passive objects, while class active objects 3/49

RAII Idiom - Resource Acquisition is Initialization

Holding a resource is a class invariant, and is
tied to object lifetime

Implication 1: C++ programming language does not require the
garbage collector!!

Implication 2 :The programmer has the responsibility to manage
the resources

RAII Idiom consists in three steps:

• Encapsulate a resource into a class (constructor)
• Use the resource via a local instance of the class
• The resource is automatically releases when the object gets

out of scope (destructor)
4/49

C++ Classes 1/3

Struct declaration and definition

struct A; // struct declaration

struct A { // struct definition
int x; // data member
void f(); // function member

};

Class declaration and definition

class A; // class declaration

class A { // class definition
public: // visibility attribute

int x; // data member
void f(); // function member

}; 5/49

C++ Classes 2/3

Struct/Class function declaration and definition

struct A {
void g(); // function member declaration

void f() { // function member declaration
cout << "f"; // and inline definition

}
};

void A::g() { // function member definition
cout << "g"; // (not inline)

}

6/49

C++ Classes 3/3

struct B {
void g() { cout << "g"; }

};

struct A {
int x;
B b;
void f() { cout << "f"; }
using T = B;

};

A a;
cout << a.x;
a.f();
a.b.g();
A::T obj; // equal to "B obj"

7/49

Class Hierarchy 1/2

Child/Derived Class or Subclass
A new class that inheriting variables and functions from another
class is called a derived or child class

Parent/Base Class
The closest class providing variables and function of a derived
class is called parent or base class

Extend a base class refers to creating a new class which retains
characteristics of the base class and on top it can add (and never
remove) its own members

Syntax:
struct DerivedClass : [<inheritance>] BaseClass {

...
}; 8/49

Class Hierarchy 2/2

struct A { // base class
int value = 3;

};

struct B : A { // B inherits from A (B extends A)
int data = 4; // (B is child of A)
int f() { return data; }

};

struct C : B { // C extends B (C is child of B)
};

A a1;
B b1;
C c1;
cout << a1.value; // print 3
cout << b1.data; // print 4
cout << c1.f(); // print 4 9/49

Inheritance Attributes 1/3

private , public , and protected inheritance

• public: The public members can be accessed without any
restriction

• protected: The protected members of a base class can be
accessed by its derived class

• private: The private members of a class can only be accessed
by function members of that class

10/49

Inheritance Attributes 2/3

Member
declaration Inheritance Derived classes

public
public

public
protected → → protected
private \

public
protected

protected
protected → → protected
private \

public
private

private
protected → → private
private \

• structs have default public members
• classes have default private members

11/49

Inheritance Attributes 3/3

include <iostream>
using namespace std;

class A {
public:

int var1 = 3;
int f() { return var1; }

protected:
int b;

};

class B : public A { // without public, B inherits
}; // the data member "var1" and f()

// as private members
int main() {

B derived;
cout << derived.f(); // print 3

// cout << derived.b; // compile error protected
}

12/49

Class Constructor

Class Constructor

Constructor [ctor]
A constructor is a special member function of a class that is
executed when a new instance of that class is created
Goals: initialization and resource acquisition

• A constructor is always named as the class
• A constructor have no return type
• A constructor is supposed to initialize all the data members of

a class
• We can define multiple constructors (different signatures)

Class constructors are never inherited. Derived class must call
a Base constructor before the current class constructor
Class constructors are called in order of declaration
(C++ objects are constructed like onions) 13/49

Class Constructor (Examples)

include <iostream>
using namespace std;
class A {

int x;
public:

// constructor
A(int x1) : x(x1) { // initialization list syntax

cout << "A";
}

};
class B : public A {
public:

B(int b1) : A{b1} { cout << "B"; } // A{b1} better syntax
};

int main() {
A a(1); // print "A"
B b(2); // print "A", then print "B"
A c = {1}; // initialization, print "A"
A d{1}; // initialization (C++11), print "A"

} 14/49

Initialization Order

Class members initialization follows the order of declarations and
not the order in the initialization list

struct A {
int* array;
int size;

A(int user_size) :
size{user_size},
array{new int[size]} {}
// very dangerous: "size" is still undefined

};

A a{10};
cout << a.array[4]; // potential segmentation fault

15/49

Default Constructor

Default Constructor

The default constructor T() is a constructor with no
arguments

Every class has always either an implicit or explicit default
constructor

class A {
public:

A() {} // default constructor
A(int) {} // normal user-defined constructor

};

if a user-provided constructor is defined while the default constructor is not,
the default constructor is marked as deleted

16/49

Example

struct A {}; // implicit-declared public default constructor

class B {
public: // <- visibility

B() { cout << "B"; } // default constructor
};

struct C {
int& a; // implicit-deleted default constructor (next slide)

};

A a1; // call the default constructor
// A a2(); // interpreted as a function declaration!!
B b; // ok, print "B"
B array[3]; // print three times "B"
B* ptr = new B[4]; // print four times "B"
// C c; // compile error deleted

17/49

Deleted Default Constructor

The implicit default constructor of a class is marked as deleted if
(simplified):

• It has a member of reference/const type
• It has any user-defined constructor
• It has a member/base class which has a deleted (or

inaccessible, or ambiguous) default constructor
• It has a base class which has a deleted (or inaccessible, or

ambiguous) destructor

18/49

Delegate Constructor

The problem:
Most constructors usually perform identical initialization steps
before executing individual operations

A delegate constructor (C++11) calls another constructor of the
same class to reduce the repetitive code by adding a function that
does all of the initialization steps
struct A {

int a1;
float b1;
bool c1;
// standard constructor:
A(int a1, float b1, bool c1) : a(a1), b(b1), c(c1) {

// do a lot of work
}

A(int a1, float b1) : A(a1, b1, false) {} // delegate construtor
A(float b1) : A(100, b1, false) {} // delegate construtor

};
19/49

explicit Keyword

explicit

The explicit keyword specifies that a constructor or
conversion function does not allow implicit conversions or
copy-initialization

struct A {
A(int) {}
A(int, int) {}

};

struct B {
explicit B(int) {}
explicit B(int, int) {}

};

A a1(2); // ok
A a2 = 1; // ok (implicit)
A a3{4, 5}; // ok. Selected A(int, int)
A a4 = {4, 5}; // ok. Selected A(int, int)

B b1(2); // ok
// B b2 = 1; // error implicit conversion
B b3{4, 5}; // ok. Selected B(int, int)
// B b4 = {4, 5}; // error implicit conversion
B b5 = (B) 1; // OK: explicit cast

20/49

Copy Constructor

Copy Constructor

Copy Constructor

A copy constructor T(const T&) is a constructor used to
create a new object as a copy of an existing object

Every class always define an implicit or explicit copy constructors

struct A {
A() {} // default constructor
A(int) {} // user-provided constructor
A(const A&) {} // copy constructor

}

Note: in class the implicit copy constructor is marked as private

21/49

Example

struct A {
int size;
int* array;

A(int size1) : size{size1} {
array = new int[size];

}

A(const A& obj) : size{obj.size} { // copy constructor
array = new int[size];
for (int i = 0; i < size; i++)

array[i] = obj.array[i];
}

};

A x{100};
// do something with x.array ...
A y{x}; // call "A::A(const A&)" copy constructor 22/49

Copy Constructor Usage

The copy constructor is used to:
• Initialize one object from another having the same type

- Direct constructor
- Assignment operator

A a1;
A a2(a1); // Direct copy-constructor
A a3 = a1; // Copy-initialization

• Copy an object which is passed by-value as input parameter of
a function
void f(A a);

• Copy an object which is returned as result from a function*
A f() {

return A(3); // * see RVO optimization
} 23/49

Examples

class A {
public:

A() {}
A(const A& obj) { cout << "copy"; }

};

void f(A a) {}
A g() { return A(); };

A a;
A b = a; // copy constructor (assignment) "copy"
A c(b); // copy constructor (direct) "copy"
f(b); // copy constructor (argument) "copy"
g(); // copy constructor (return value) "copy"
A d = g(); // * see RVO optimization (depends)

24/49

Pass by-value and Copy Constructor

class A {
public:

A() {}
A(const A& obj) { cout << "expensive copy"; }

};

class B : public A {
public:

B() {}
B(const B& obj) { cout << "cheap copy"; }

};

void f1(B b) {}
void f2(A a) {}

int main() {
B b1;
f1(b1); // cheap copy
f2(b1); // expensive copy!! It calls A(const A&) implicitly

}
25/49

Deleted Copy Constructor

The copy constructor of a class is marked as deleted if
(simplified):

• Every non-static class type (or array of class type) member has a
valid (accessible, not deleted, not ambiguous) copy constructor

• Every base classes has a valid (accessible, not deleted, not
ambiguous) copy constructor

• It has a base class with a deleted or inaccessible destructor

• The class has no move constructor (next lectures)

26/49

Class Destructor

Class Destructor 1/3

Destructor [dtor]

A destructor ∼T() is a member function of a class that is
executed whenever an object is out-of-scope or whenever the
delete /delete[] expression is applied to a pointer of that

class
Goals: resources releasing

• A destructor will have exact same name as the class prefixed
with a tilde (∼)

• A destructor does not have any return type

• Each object has exactly one destructor

• A destructor is useful for releasing resources before the class
instance goes out of scope or it is deleted 27/49

Class Destructor 2/3

struct A {
int* array;

A() { // constructor
array = new int[10];

}

∼A() { // destructor
delete[] array;

}
};

int main() {
A a; // call the constructor
for (int i = 0; i < 5; i++)

A b; // call 5 times the constructor and the destructor
// call the destructor of "a"

} 28/49

Class Destructor (Order of Calls) 3/3

Class destructor is never inherited. Base class destructor is
invoked after the current class destructor.

Class destructors are called in reverse order
struct A {

∼A() { cout << "A"; }
};
struct B {

∼B() { cout << "B"; }
};
struct C : A {

B b; // call ∼B()
∼C() { cout << "C"; }

};

int main() {
C b; // print "C", then "B", then "A"

} 29/49

Initialization and
Defaulted Members

Initialization List

Any data member should be initialized by constructors with the
initialization list or by using brace-or-equal-initializer (C++11)
syntax

const and reference data members must be initialized by using
the initialization list or by using brace-or-equal-initializer

struct A {
int x;
const char y; // must be initilizated
int& z; // must be initilizated
A() : x(3), y('a'), z(x) {} // initialization-list, also x{3}

};

struct A {
int x = 3; // brace-or-equal-initializer (C++11), also x{3}
const char y = 'a'; // brace-or-equal-initializer (C++11)
int& z = x; // brace-or-equal-initializer (C++11)

}; 30/49

Uniform Initialization

Uniform Initialization (C++11)
Uniform Initialization {}, also called list-initialization, is a way
to fully initialize any object independently from its data type

• Minimizing Redundant Typenames
- In function arguments
- In function returns

• Solving the “Most Vexing Parse” problem
- Constructor interpreted as function prototype

mbevin.wordpress.com/2012/11/16/uniform-initialization 31/49

http://mbevin.wordpress.com/2012/11/16/uniform-initialization/

Minimizing Redundant Typenames

struct Point {
int x, y;
Point(int x1, int y1) : x(x1), y(y1) {}

};

C++03 Point add(Point a, Point b) {
return Point(a.x + b.x, a.y + b.y);

}

Point c = add(Point(1, 2), Point(3, 4));

C++11 Point add(Point a, Point b) {
return { a.x + b.x, a.y + b.y }; // here

}

auto c = add({1, 2}, {3, 4}); // here

32/49

“Most Vexing Parse” problem F

struct A {
int x, y;

};
class B {

int x, y;
public:

B(A a) : x(a.x), y(a.y) {}
B(int x1, int y2) : x(x1), y(y2) {}

};
//--

B g(A a) { // "b" is interpreted as function declaration
B b(A()); // with a single argument A (*)() (func. pointer)

// return b; // compile error "Most Vexing Parse" problem
} // solved with B b{ A{} };
//--

struct C {
// B b (1, 2); // compile error (struct)! It works in a function scope

B b { 1, 2 }; // ok, call the constructor
}; 33/49

Defaulted Constructor (= default) 1/2

In C++11, the compiler can generate default/copy/move
constructors and copy/more assignment operators

syntax: A() = default

The defaulted default constructor has a
::::::
similar effect as a

user-defined constructor with empty body and empty initializer list

When compiler-generated constructor is useful:
• Any user-provided constructor disables implicitly-generated

default constructor

• Change the visibility of non-user provided constructors and
assignment operators (public , protected , private)

34/49

Defaulted Constructor (= default) 2/2

struct A {
int v;

A(int v1) : v(v1){} // delete implicitly-defined default ctor
// because a user-provided constructor is
// defined

A() = default; // now, A has the default constructor
};

class B : A { // default/copy constructor marked private
// because B is a class

public:
B() = default; // default constructor is now public

B(const B&) = default; // default constructor is now public
};

35/49

Defaulted Constructor and Inheritance

struct A {
int x;
A(int x1) : x(x1){}
A() = default;

};

struct B : A {
int y;
B() = default;
// "B()" initializes its members and calls "A()"
B(const B&) = default;

}; // "B(const B&)" copies its members and calls "A(const A&)"

B b1, b2;
b1.x = 3;
b1.y = 4;
b2 = b1; // "b2.x" = 3, "b2.y" = 4

36/49

Defaulted vs. User-Provided Default Constructor

struct A {
int x;
A() {} // User-Provided

};

struct B {
int x;
B() = default; // Compiler-Provided

};

A a;
cout << a.x; // a.x is undefined

B b;
cout << b.x; // b.x is zero

37/49

Class Keywords

this Keyword

this
Every object has access to its own address through the pointer
this

The this const pointer is an implicit variable added to any
member function. In general, it is not needed (and not suggested)
this is necessary when:
• The name of a local variable is equal to some member name
• Return reference to the calling object

struct A {
int x;
void f(int x) {

this->x = x; // without "this" has no effect
}
const A& g() {

return *this;
}

};
38/49

static Keyword 1/2

static Keyword
The keyword static declares members (fields or methods) that
are not bound to class instances. A static member is shared by
all objects of the class

• A static member function can access only static class
members

• A non-static member function can access static class members

• Non-const static data members cannot be directly initialized
inline

39/49

Static Members Initialization

// "static" means the same value for all instances

struct A {
// static int a = 4; // compiler error

static int a; // ok

static const int b = 4; // also C++03

static const float c = 4.2f; // only GNU extension (GCC)

static constexpr float d = 4.2f; // ok
};

int A::a = 4; // ok, without definition -> undefined reference

40/49

static Keyword 2/2

include <iostream>
struct A {

int y = 2;
static int x; // declaration (= 3 -> compile error)

static int f() { return x * 2; }
// static int f() { return y; } // error "y" is non-static

int h() { return x; } // ok, ("x" is static)
};

int A::x = 3; // static variable definition

int main() {
A a;
a.h(); // return 3
A::x++;
std::cout << A::x; // print 4
std::cout << A::f(); // print 8

}
41/49

const Keyword 1/2

Const member functions
Const member functions, or inspectors, do not change the
object state

Member functions without a const suffix are called non-const member
functions or mutators

The compiler prevents callers from inadvertently
mutating/changing the object data members with functions
marked as const

class A {
int x = 3;

public:
int get() const {
// x = 2; // compile error class variables cannot

return x; // be modified
}

};

In-depth description: isocpp.org/wiki/faq/const-correctness

42/49

isocpp.org/wiki/faq/const-correctness

const Keyword (Const Overloading) 2/2

The const keyword is part of the functions signature. Therefore
a class can implement two similar methods, one which is called
when the object is const , and one that is not
class A {

int x = 3;
public:

int& get1() { return x; } // read and write
int get1() const { return x; } // read only
int& get2() { return x; } // read and write

};

A a1;
cout << a1.get1(); // ok
cout << a1.get2(); // ok
a1.get1() = 4; // ok

const A a2;
cout << a2.get1(); // ok
// cout << a2.get2(); // compile error "a2" is const
//a2.get1() = 5; // compile error only "get1() const" is available

43/49

mutable Keyword

mutable
mutable members of const class instances are modifiable

Constant references or pointers to objects cannot modify that
object in any way, except for data members marked mutable

• It is particularly useful if most of the members should be constant
but a few need to be modified

• Conceptually, mutable members should not change anything that
can be retrieved from the class interface

struct A {
int x = 3;
mutable int y = 5;

};
int main() {

const A a;
// a.x = 3; // compiler error const

a.y = 5; // ok
}

44/49

using Keyword

The using keyword can be used to change the inheritance
attribute of member data or functions
class A {
protected:

int x = 3;
};

class B : A {
public:

using A::x;
};

int main() {
B b;
b.x = 3; // ok, "b.x" is public

}
45/49

friend Keyword 1/3

friend Class
A friend class can access the private and protected
members of the class in which it is declared as a friend

Friendship properties:

• Not Symmetric: if class A is a friend of class B, class B is not
automatically a friend of class A

• Not Transitive: if class A is a friend of class B, and class B is
a friend of class C, class A is not automatically a friend of
class C

• Not Inherited: if class Base is a friend of class X, subclass
Derived is not automatically a friend of class X; and if class X
is a friend of class Base, class X is not automatically a friend
of subclass Derived 46/49

friend Keyword 2/3

class A; // class declaration

class B {
int y = 3; // private
int f(A a) { return a.x; } // ok, B is friend of A

};

class A {
friend class B;
int x = 3; // private

// int f(B b) { return b.y; } // compile error not symmetric
};

class C : B {
// int f(A a) { return a.x; } // compile error not inherited
};

47/49

friend Keyword 3/3

friend Method
A non-member function can access the private and protected
members of a class if it is declared a friend of that class

class A {
int x = 3; // private

friend int f(A a);
};

//'f' is not a member function of any class
int f(A a) {

return a.x; // A is friend of f(A)
}

48/49

delete Keyword

delete Keyword
The delete keyword (C++11) explicitly marks a member
function as deleted and any use results in a compiler error. When
it is applied to copy/move constructor or assignment, it prevents
the compiler from implicitly generating these functions

The default copy/move functions for a class can produce unexpected
results. The keyword delete prevents these errors

struct A {
A(const A& a) = delete;

};
// e.g. if a class uses heap memory

void f(A a) {} // the copy construct should be
// written by the user -> expensive copy

A a;
// f(a); // compile error marked as deleted 49/49

	C++ Classes
	RAII
	Class Hierarchy
	Inheritance Attributes

	Class Constructor
	Default Constructor
	Delegate Constructor
	explicit Keyword

	Copy Constructor
	Class Destructor
	Initialization and Defaulted Members
	Initialization List
	Uniform Initialization
	Defaulted Constructor

	Class Keywords
	this
	static
	const
	mutable
	using
	friend
	delete

