
Modern C++
Programming
17. Code Optimization II

Federico Busato

University of Verona, Dept. of Computer Science
2021, v3.04

Table of Context

1 Compiler Optimizations
About the Compiler
Architecture Flags
Optimization Flags
Help the Compiler to Produce Better Code
Profile Guided Optimization (PGO)

2 Compiler Transformation Techniques

1/58

Table of Context

3 Libraries and Data Structures
External Libraries
Std Library

4 Profiling
gprof

uftrace

callgrind

cachegrind

perf Linux profiler

2/58

Table of Context

5 Performance Benchmarking
What to Test?
Workload/Dataset Quality
Cache Behavior
Stable CPU Performance
Program Memory Layout

6 Parallel Computing
Concurrency vs. Parallelism
Performance Scaling
Gustafson’s Law
Parallel Programming Languages

3/58

Compiler
Optimizations

About Compiler Optimizations

”I always say the purpose of optimizing compilers is
not to make code run faster, but to prevent program-
mers from writing utter **** in the pursuit of making
it run faster“

Rich Felker, musl-libc (libc alternative)

4/58

About the Compiler 1/2

Important advise: Use an updated version of the compiler

• Newer compiler produces better/faster code
- Effective optimizations
- Support for newer CPU architectures

• New warnings to avoid common errors and better support for
existing error/warnings (e.g. code highlights)

• Faster compiling, less memory usage

• Less compiler bugs: compilers are very complex and they
have many bugs

5/58

About the Compiler 2/2

Which compiler?

Answer: It dependents on the code and on the processor
example: GCC 9 vs. Clang 8

Some compilers can produce optimized code for specific
architectures:

• Intel Compiler (commercial): Intel processors
• IBM XL Compiler (commercial): IBM processors/system
• Nvidia PGI Compiler (free/commercial): Multi-core

processors/GPUs

• gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
• Intel Blog: gcc-x86-performance-hints 6/58

https://www.phoronix.com/scan.php?page=article&item=gcc9-clang8-hedt&num=1
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://software.intel.com/en-us/blogs/2012/09/26/gcc-x86-performance-hints

Architecture Flags

32-bits or 64-bits?

-m64 In 64-bit mode the number of available registers increases
from 6 to 14 general and from 8 to 16 XMM. Also all 64-bits
x86 architectures have SSE2 extension by default. 64-bit
applications can use more than 4GB address space

-m32 32-bit mode. It should be combined with -mfpmath=sse to
enable using of XMM registers in floating point instructions
(instead of stack in x87 mode). 32-bit applications can use
less than 4GB address space

It is recommended to use 64-bits for High-Performance Computing
applications and 32-bits for phone and tablets applications

7/58

Optimization Flags 1/5

-O0 Disables any optimization
• default behavior
• fast compile time

-O1 Enables basic optimizations

-O2 Enables advanced optimizations
• some optimization steps are expensive
• can increase the binary size

-O3 Turns on all optimizations specified by -O2, plus some more
• -O3 does not guarantee to produce faster code than -O2
• it could break floating-point IEEE764 rules on some

non-traditional compilers

-O4 For some compilers, it is an alias of -O3 . In other cases
can refers to inter-procedural optimization 8/58

Optimization Flags (floating-point) 2/5

In general, enabling the following flags implies less floating-point
accuracy, breaking the IEEE764 standard, and it is implementation
dependent (not included in -O3)

-fno-trapping-math Disable floating-point exceptions

-ffinite-math-only Disable special conditions for handling inf
and NaN

-funsafe-math-optimizations

Allows breaking floating-point associativity
and enables reciprocal optimization

-ffast-math Enables aggressive floating-point
optimizations. All the previous, flush-to-zero
denormal number, plus others 9/58

Optimization Flags 3/5

-Ofast Provides other aggressive optimizations that may
violate strict compliance with language standards.
It includes -O3 -ffast-math

-Os Optimize for size. It enables all -O2 optimizations
that do not typically increase code size

-funroll-loops Enables loop unrolling (not included in -O3)

10/58

Optimization Flags 4/5

-march=native Generates instructions for a specific machine by
determining the processor type at compilation time
(not included in -O3) (e.g. SSE2 , AVX512 , etc.)

-mtune=native Generates instructions for a specific machine and
for earlier CPUs in the architecture family (may be
slower than -march=native)

11/58

Optimization Flags 5/5

-flto Enables Link Time Optimizations (Interprocedural
Optimization). The linker merges all modules into
a single combined module for optimization

• the linker must support this feature: GNU ld
v2.21++ or gold version, to check with
ld --version

• it can significantly improve the performance
• in general, it is a very expensive step, even longer

than the object compilations

-fwhole-program Assume that the current compilation unit
represents the whole program being compiled →
Assume that all non-extern functions and variables
belong only to their compilation unit

Ubuntu 21.04 To Turn On LTO Optimizations For Its Packages
12/58

https://www.phoronix.com/scan.php?page=news_item&px=Ubuntu-21.04-LTO-Packages

Matrix Multiplication Example

A * B

N 128 256 512 1024

V0
V1
V2
V3
V4
Speedup

V0 -O0
V1 -O3
V2 -O3 + restrit pointers
V3 -O3 -march=native + restrit pointers
V4 -O3 -march=native -funroll-loops + restrit pointers 13/58

Help the Compiler to Produce Better Code

Grouping related variables and functions in same translation
units

• Private functions and variables in the same translation units

• Define every global variable in the translation unit in which it
is used more often

• Declare in an anonymous namespace the variables and
functions that are global to translation unit, but not used by
other translation units

• Put in the same translation unit all the function definitions
belonging to the same bottleneck

Static library linking helps the linker to optimize the code
across different modules (link-time optimizations). Dynamic
linking prevents these kind of optimizations 14/58

Profile Guided Optimization (PGO) 1/2

Profile Guided Optimization (PGO) is a compiler technique
aims at improving the application performance by reducing
instruction-cache problems, reducing branch mispredictions, etc.
PGO provides information to the compiler about areas of an
application that are most frequently executed

It consists in the following steps:

(1) Compile and instrument the code

(2) Run the program by exercising the most used/critical paths

(3) Compile again the code and exploit the information produced
in the previous step

The particular options to instrument and compile the code are
compiler specific 15/58

Profile Guided Optimization (PGO) 2/2

GCC

$ gcc -fprofile-generate my_prog.c my_prog # program instrumentation
$./my_prog # run the program (most critial/common path)
$ gcc -fprofile-use -O3 my_prog.c my_prog # use instrumentation info

Clang

$ clang++ -fprofile-instr-generate my_prog.c my_prog
$./my_prog
$ xcrun llvm-profdata merge -output default.profdata default.profraw
$ clang++ -fprofile-instr-use=default.profdata -O3 my_prog.c my_prog

e.g. Firefox and Google Chrome support PGO building 16/58

Polyhedral Optimizations

Polyhedral optimization is a compilation
technique that rely on the representation
of programs, especially those involving nested
loops and arrays, in parametric polyhedra.
Thanks to combinatorial and geometrical optimizations on these
objects, the compiler is able to analyze and optimize the programs
including automatic parallelization, data locality, memory
management, SIMD instructions, and code generation for hardware
accelerators

Polly is a high-level loop and data-locality optimizer and
optimization infrastructure for LLVM

PLUTO is an automatic parallelization tool based on the polyhedral
model

see also Using Polly with Clang
17/58

https://polly.llvm.org/
http://pluto-compiler.sourceforge.net/
https://polly.llvm.org/docs/UsingPollyWithClang.html

Compiler
Transformation
Techniques

Help the Compiler to Produce Better Code

Overview on compiler code generation and transformation:

• Optimizations in C++ Compilers
Matt Godbolt, ACM Queue

Compiler Optimizations

18/58

https://dl.acm.org/ft_gateway.cfm?id=3372264&ftid=2096683&dwn=1
http://compileroptimizations.com/category/address_optimization.htm

Compiler Transformations 1/4

• Constant folding. Direct evaluation constant expressions at
compile-time
const int K = 100 * 1234 / 2;

• Constant propagation. Substituting the values of known
constants in expressions at compile-time
const int K = 100 * 1234 / 2;
const int J = K * 25;

• Common subexpression elimination. Avoid computing
identical and redundant expressions
int x = y * z + v;
int y = y * z + k; // y * z is redundant

19/58

Compiler Transformations 2/4

• Induction variable elimination. Eliminate variables whose
values are dependent (induction)
for (int i = 0; i < 10; i++)

x = i * 8;
// "x" can be derived by knowing the value of "i"

• Dense code elimination. Elimination of code which is
executed but whose result is never used, e.g. dead store
int a = b * c;
... // "a" is never used, "b * c" is not computed

Unreachable code elimination instead involves removing code
that is never executed

20/58

Compiler Transformations 2/4

• Use-define chain. Avoid computations related to a variable
that happen before its definition
x = i * k + l;
x = 32; // "i * k + l" is not needed

• Peephole optimization. Replace a small set of low-level
instructions with a faster sequence of instructions with better
performance and the same semantic. The optimization can
involve pattern matching
imul eax, eax, 8 // a * 8
sal eax, 3 // a << 3 (shift)

21/58

Loop Unswitching

• Loop Unswitching. Split the loop to improve data locality
and perform additional optimizations
for (i = 0; i < N; i++) {

if (x)
a[i] = 0;

else
b[i] = 0;

}

if (x) {
for (i = 0; i < N; i++)

a[i] = 0; // use memset
}
else {

for (i = 0; i < N; i++)
b[i] = 0; // use memset

} 22/58

Loop Fusion

• Loop Fusion (jamming). Merge multiple loops to improve
data locality and perform additional optimizations
for (i = 0; i < 300; i++)

a[i] = a[i] + sqrt(i);
for (i = 0; i < 300; i++)

b[i] = b[i] + sqrt(i);

for (i = 0; i < 300; i++) {
a[i] = a[i] + sqrt(i); // sqrt(i) is computed only
b[i] = b[i] + sqrt(i); // one time

}

23/58

Loop Fission

• Loop Fission (distribution). Split a loop in multiple loops to
for (i = 0; i < 300; i++)

a[i] = a[i] + sqrt(i);
for (i = 0; i < 300; i++)

b[i] = b[i] + sqrt(i);

for (i = 0; i < 300; i++) {
a[i] = a[i] + sqrt(i); // sqrt(i) is computed only
b[i] = b[i] + sqrt(i); // one time

}

24/58

Loop Interchange

• Loop Interchange. Exchange the order of loop iterations to
improve data locality and perform additional optimizations
(e.g. vectorization)
for (i = 0; i < 1000000; i++) {

for (j = 0; j < 100; j++)
a[j * x + i] = ...; // low locality

}

for (j = 0; j < 100; j++) {
for (i = 0; i < 1000000; i++)

a[j * x + i] = ...; // high locality
}

25/58

Loop Tiling

• Loop Tiling (blocking, nest optimization). Partition the
iterations of multiple loops to exploit data locality
for (i = 0; i < N; i++) {

for (j = 0; j < M; j++)
a[j * N + i] = ...; // low locality

}

for (i = 0; i < N; i += TILE_SIZE) {
for (j = 0; j < M; j += TILE_SIZE) {

for (k = 0; k < TILE_SIZE; k++) {
for (l = 0; l < TILE_SIZE; l++) {

In many cases, the compiler already applies these optimizations 26/58

Libraries and Data
Structures

External Libraries 1/2

Consider using optimized external libraries for critical
program operations

• malloc replacement:
• tcmalloc (Google),
• mimalloc (Microsoft)

• Linear Algebra: Eigen, Armadillo, Blaze

• Map/Set: B+Tree as replacement for red-black tree
(std::map) (better locality, less pointers)

• STX B+Tree
• Abseil B-Tree

27/58

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://github.com/microsoft/mimalloc
http://eigen.tuxfamily.org
arma.sourceforge.net
https://bitbucket.org/blaze-lib/blaze
https://panthema.net/2007/stx-btree/
https://abseil.io/docs/cpp/guides/container

External Libraries 2/2

• Hash Table: (replace for std::unsorted set/map)
• Google Sparse/Dense Hash Table
• bytell hashmap
• Facebook F14 memory efficient hash table
• Abseil Hashmap (2x-3x faster)

• Print and formatting: fmt library instead of iostream or
printf

• Random generator: PCG random generator instead of
Mersenne Twister or Linear Congruent

• Non-cryptographic hash algorithm: xxHash instead of CRC

• Cryptographic hash algorithm: BLAKE3 instead of MD5 or
SHA 28/58

https://github.com/sparsehash/sparsehash
https://probablydance.com/2018/05/28/a-new-fast-hash-table-in-response-to-googles-new-fast-hash-table/
https://code.fb.com/developer-tools/f14/
https://abseil.io/docs/cpp/guides/container
https://github.com/fmtlib/fmt
http://www.pcg-random.org/
https://cyan4973.github.io/xxHash/
https://github.com/BLAKE3-team/BLAKE3

Library Collections

A curated list of awesome header-only
C++ libraries

29/58

https://github.com/p-ranav/awesome-hpp

std Library - From C to C++ 1/3

• Avoid old C library routines such as qsort , bsearch , etc.
Prefer instead std::sort , std::binary search

• std::sort is based on a hybrid sorting algorithm. Quick-sort /
head-sort (introsort), merge-sort / insertion, etc. depending on
the std implementation

• Prefer std::find() for small array, std::lower bound ,
std::upper bound , std::binary search for large sorted

array

• std::fill applies ::memset and std::copy applies
::memcpy if the input/output are continuous in memory

• Prefer lambda expression (or function object) instead of
std::function or function pointers

30/58

std Library - Containers 2/3

• Use std container member functions (e.g. obj.find())
instead of external ones (e.g. std::find()). Example:
std::set O(log(n)) vs. O(n)

• Be aware of container properties, e.g. vector.push vector(v) ,
instead of vector.insert(vector.begin(), value)

• Consider unordered containers instead of the standard one, e.g.
unorder map vs. map

• Prefer std::array instead of dynamic heap allocation

• Most data structures are implemented over the heap memory.
Consider re-implement them by using the stack memory if the
number of elements to insert is small (e.g. queue)

31/58

std Library - Initialization and noexcept 3/3

• Set std::vector size during the object construction (or use
the reserve() method) if the number of elements to insert is
known in advance

• Use the same type for initialization in functions like
std::accumulate()

auto array = new int[size];
... // 0u != 0 => no memset
auto sum = std::accumulate(array, array + size, 0u);

• Use noexcept decorator → program is aborted if an error
occurred instead of raising an exception. see
Bitcoin: 9% less memory: make SaltedOutpointHasher
noexcept

32/58

https://github.com/bitcoin/bitcoin/pull/16957
https://github.com/bitcoin/bitcoin/pull/16957

Profiling

Overview

A code profiler is a form of dynamic program analysis which aims at
investigating the program behavior to find performance bottleneck.
A profiler is crucial in saving time and effort during the development
and optimization process of an application

Code profilers are generally based on the following methodologies:
• Instrumentation Instrumenting profilers insert special code at the

beginning and end of each routine to record when the routine starts
and when it exits. With this information, the profiler aims to measure
the actual time taken by the routine on each call.
Problem: The timer calls take some time themselves

• Sampling The operating system interrupts the CPU at regular in-
tervals (time slices) to execute process switches. At that point, a
sampling profiler will record the currently-executed instruction

33/58

gprof

gprof is a profiling program which collects and arranges timing
statistics on a given program. It uses a hybrid of instrumentation
and sampling programs to monitor function calls

Website: sourceware.org/binutils/docs/gprof/

Usage:
• Code Instrumentation

$ g++ -pg [flags] <source_files>

Important: -pg is required also for linking and it is not supported by clang

• Run the program (it produces the file gmon.out)
• Run gprof on gmon.out

$ gprof <executable> gmon.out

• Inspect gprof output 34/58

https://sourceware.org/binutils/docs/gprof/

gprof 2/2

gprof output

gprof can be also used for showing the call graph statistics

$ gprof -q <executable> gmon.out

35/58

uftrace

The uftrace tool is to trace and analyze execution of a program
written in C/C++

Website: github.com/namhyung/uftrace

$ gcc -pg <program>.cpp
$ uftrace record <executable>
$ uftrace replay

Flame graph output in html and svg

36/58

https://github.com/namhyung/uftrace

callgrind

callgrind is a profiling tool that records the call history among
functions in a program’s run as a call-graph. By default, the
collected data consists of the number of instructions executed

Website: valgrind.org/docs/manual/cl-manual.html

Usage:

• Profile the application with callgrind

$ valgrind --tool callgrind <executable> <args>

• Inspect callgrind.out.XXX file, where XXX will be the
process identifier

37/58

http://valgrind.org/docs/manual/cl-manual.html

cachegrind

cachegrind simulates how your program interacts with a
machine’s cache hierarchy and (optionally) branch predictor

Website: valgrind.org/docs/manual/cg-manual.html

Usage:

• Profile the application with cachegrind

$ valgrind --tool cachegrind --branch-sim=yes <executable> <args>

• Inspect the output (cache misses and rate)
- l1 L1 instruction cache
- D1 L1 data cache
- LL Last level cache

38/58

http://valgrind.org/docs/manual/cg-manual.html

kcachegrind and qcachegrindwin (View)

KCachegrind (linux) and Qcachegrind (windows) provide a
graphical interface for browsing the performance results of
callgraph

•kcachegrind.sourceforge.net/html/Home.html

•sourceforge.net/projects/qcachegrindwin

39/58

http://kcachegrind.sourceforge.net/html/Home.html
https://sourceforge.net/projects/qcachegrindwin/

gprof2dot (View)

gprof2dot is a Python script to convert the output from many
profilers into a dot graph

Website: github.com/jrfonseca/gprof2dot

40/58

https://github.com/jrfonseca/gprof2dot

perf Linux profiler

Perf is performance monitoring and analysis tool for Linux. It uses
statistical profiling, where it polls the program and sees what
function is working

Website: perf.wiki.kernel.org/index.php/Main Page

$ perf record -g <executable> <args> // or
$ perf record --call-graph dwarf <executable>
$ perf report // or
$ perf report -g graph --no-children

Linux perf for Qt developers 41/58

https://perf.wiki.kernel.org/index.php/Main_Page
https://www.kdab.com/wp-content/uploads/stories/Linux_perf_for_Qt_developers.pdf

Other Profilers

Free profiler:

• Hotspot

Proprietary profiler:

• Intel VTune

• AMD CodeAnalyst

42/58

https://www.kdab.com/hotspot-gui-linux-perf-profiler/

Performance
Benchmarking

Performance Benchmarking

Performance benchmarking is a non-functional test
focused on measuring the efficiency of a given task or
program under a particular load

Performance benchmarking is hard!!

Main reasons:

• What to test?
• Workload/Dataset quality
• Cache behavior
• Stable CPU performance
• Program memory layout 43/58

What to Test?

1. Identify performance metrics: The metric(s) should be
strongly related to the specific problem and that allows a
comparison across different systems, e.g. elapsed time is not a
good metric in general for measuring the throughput

- Matrix multiplication: FLoating-point Operation Per Second
(FLOPS)

- Graph traversing: Edge per Second (EPS)

2. Plan performance tests: Determine what part of the
problem is relevant for solving the given problem, e.g.
excluding initialization process

- Suppose a routine that requires different steps and ask a
memory buffer for each of them. Memory allocations should be
excluded as a user could use a memory pool

44/58

Workload/Dataset Quality

1. Stress the most important cases: Rare or edge cases that
are not used in real-world applications or far from common
usage are less important, e.g. a graph problem where all
vertices are not connected

2. Use datasets that are well-known in the literature and
reproducible. Don’t use “self-made” dataset and, if possible,
public available resources

3. Use a reproducible test methodology. Trying to remove
sources of “noise”, e.g. if the procedure is randomized, the
test should be use with the same seed. It is not always
possible, e.g. OS scheduler, atomic operations in parallel
computing, etc.

see also Reproducibility in artificial intelligence 45/58

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/17248/15864

Cache Behavior

• After a data is loaded from the main memory, it remains in
the cache until it expires or is evicted to make room for new
content

• Executing the same routine multiple times, the first run is
much slower than the other ones due to the cache effect

• There is no a systematic way to flush the cache. A good
technique to ensure reliable performance results is to overwrite
all data involved in the computation between each runs

see: Is there a way to flush the entire CPU cache related to a
program? 46/58

https://stackoverflow.com/questions/48527189/is-there-a-way-to-flush-the-entire-cpu-cache-related-to-a-program
https://stackoverflow.com/questions/48527189/is-there-a-way-to-flush-the-entire-cpu-cache-related-to-a-program

Stable CPU Performance 1/4

One of the first source of fluctuation in performance measurement
is due to unstable CPU frequency

Dynamic frequency scaling, also known as CPU throttling,
automatically decreases the CPU frequency for:

• Power saving, extending battery life
• Decrease fan noise and chip heat
• Prevent high frequency damage

Modern processors also comprise advanced technologies to
automatically raise CPU operating frequency when demanding
tasks are running (e.g. Intel® Turbo Boost). Such technologies
allow processors to run with the highest possible frequency for
limited amount of time depending on different factors like type of
workload, number of active cores, power consumption,
temperature, etc. 47/58

Stable CPU Performance 2/4

Get CPU info:

• CPU characteristics:
lscpu

• Monitor CPU clocks in real-time:
cpupower monitor -m Mperf

• Get CPU clocks info:
cpupower frequency-info

see “cpufreq governors”

48/58

Stable CPU Performance 3/4

• Disable Turbo Boost
echo 1 >> /sys/devices/system/cpu/intel pstate/no turbo

• Disable hyper threading
echo 0 > /sys/devices/system/cpu/cpuX/online

or through BIOS

• Use “performance” scaling governor
sudo cpupower frequency-set -g performance

• Set CPU affinity (CPU-Program binding)
taskset -c <cpu id> <program>

• Set process priority
sudo nice -n -5 taskset -c <cpu id> <process> 49/58

Stable CPU Performance 4/4

• Disable address space randomization
echo 0 | sudo tee /proc/sys/kernel/randomize va space

• Drop file system cache (if the benchmark involves IO ops)
echo 3 | sudo tee /proc/sys/vm/drop caches; sync

• CPU isolation
don’t schedule process and don’t run kernels code on the
selected CPUs. GRUB options:
isolcpus=<cpu ids>,rcu nocbs=<cpu ids>

• How to get consistent results when benchmarking on Linux?
• How to run stable benchmarks
• Best Practices When Benchmarking CUDA Applications 50/58

https://easyperf.net/blog/2019/08/02/Perf-measurement-environment-on-Linux
https://archive.fosdem.org/2017/schedule/event/python_stable_benchmark/attachments/slides/1813/export/events/attachments/python_stable_benchmark/slides/1813/howto_run_stable_benchmarks.pdf
https://github.com/CppCon/CppCon2020/raw/main/Presentations/performance_matters/performance_matters__emery_berger__cppcon_2020.pdf

Program Memory Layout

A small code change modifies the memory program layout
→ large impact on cache (up to 40%)

• Linking
- link order → changes function addresses
- upgrade a library

• Environment Variable Size: moves the program stack
- run in a new directory
- change username

•Performance Matters, E. Berger, CppCon20
•Producing Wrong Data Without Doing Anything Obviously Wrong!,
Mytkowicz et al., ASPLOS’09 51/58

https://github.com/CppCon/CppCon2020/raw/main/Presentations/performance_matters/performance_matters__emery_berger__cppcon_2020.pdf
https://dl.acm.org/doi/pdf/10.1145/1508284.1508275?casa_token=guQ1uetgcAgAAAAA:0APP42IvXLXit_o-Nx8XYoD5BkKHmdk1ISku2Vy5ZtCqkmbdQ8tCu3b8IjFWqxaWzknrsbrOFjdjCw
https://dl.acm.org/doi/pdf/10.1145/1508284.1508275?casa_token=guQ1uetgcAgAAAAA:0APP42IvXLXit_o-Nx8XYoD5BkKHmdk1ISku2Vy5ZtCqkmbdQ8tCu3b8IjFWqxaWzknrsbrOFjdjCw

Parallel Computing

Concurrency vs. Parallelism

Concurrency
A system is said to be concurrent if it can support two or more
actions in progress at the same time. Multiple processing units
work on different tasks independently

Parallelism
A system is said to be parallel if it can support two or more
actions executing simultaneously. Multiple processing units work
on the same problem and their interaction can effect the final
result

Note: parallel computation requires rethinking original sequential
algorithms (e.g. avoid race conditions)

52/58

Performance Scaling

Strong Scaling
The strong scaling defined how the compute time decreases
increasing the number of processors for a fixed total problem
size

Weak Scaling
The weak scaling defined how the compute time decrease
increasing the number of processors for a fixed total problem size
per processor

Strong scaling is hard to achieve because of computation units
communication. Strong scaling is in contrast to the Amdahl’s Law

53/58

Gustafson’s Law

Gustafson’s Law
Increasing number of processor units allow solving larger
problems in the same time (the computation time is constant)

Multiple problem instances can run concurrently with more
computational resources

54/58

Parallel Programming Platforms and APIs 1/3

C++11 Threads (+ Parallel STL) free, multi-core CPUs

OpenMP free, directive-based, multi-core CPUs and GPUs
(last versions)

OpenACC free, directive-based, multi-core CPUs and GPUs

Khronos OpenCL free, multi-core CPUs, GPUs, FPGA

Nvidia CUDA free, Nvidia GPUs

AMD ROCm free, AMD GPUs

HIP free, heterogeneous-compute Interface for
AMD/Nvidia GPUs

55/58

Parallel Programming Platforms and APIs 2/3

Khronos SyCL free, abstraction layer for OpenCL, OpenMP,
C/C++ libraries, multi-core CPUs and GPUs

KoKKos (Sandia) free, abstraction layer for multi-core CPUs and
GPUs

Raja (LLNL) free, abstraction layer for multi-core CPUs and
GPUs

Intel TBB commercial, multi-core CPUs

OneAPI free, Data Parallel C++ (DPC++) built upon
C++ and SYCL, CPUs, GPUs, FPGA, accelerators

MPI free, de-facto standard for distributed system

56/58

Parallel Programming Platforms and APIs 3/3

57/58

A Nice Example

Accelerates computational chemistry simulations from 14 hours to
47 seconds with OpenACC on GPUs (∼ 1, 000x Speedup)

link: Accelerating Prediction of Chemical Shift of Protein
Structures on GPUs 58/58

https://www.biorxiv.org/content/10.1101/2020.01.12.903468v1
https://www.biorxiv.org/content/10.1101/2020.01.12.903468v1

	Compiler Optimizations
	About the Compiler
	Architecture Flags
	Optimization Flags
	Help the Compiler to Produce Better Code
	Profile Guided Optimization (PGO)

	Compiler Transformation Techniques
	Libraries and Data Structures
	External Libraries
	Std Library

	Profiling
	gprof
	uftrace
	callgrind
	cachegrind
	perf Linux profiler

	Performance Benchmarking
	What to Test?
	Workload/Dataset Quality
	Cache Behavior
	Stable CPU Performance
	Program Memory Layout

	Parallel Computing
	Concurrency vs. Parallelism
	Performance Scaling
	Gustafson's Law
	Parallel Programming Languages

